1 - geo_angle()

Learn how to use the geo_angle() function to calculate the angle between two lines on Earth.

Calculates clockwise angle in radians between two lines on Earth. The first line is [point1, point2] and the second line is [point2, point3].

Syntax

geo_angle(p1_longitude,p1_latitude,p2_longitude,p2_latitude,p3_longitude,p3_latitude)

Parameters

NameTypeRequiredDescription
p1_longitudereal✔️The longitude value in degrees of the first geospatial coordinate. A valid value is in the range [-180, +180].
p1_latitudereal✔️The latitude value in degrees of the first geospatial coordinate. A valid value is in the range [-90, +90].
p2_longitudereal✔️The longitude value in degrees of the second geospatial coordinate. A valid value is in the range [-180, +180].
p2_latitudereal✔️The latitude value in degrees of the second geospatial coordinate. A valid value is in the range [-90, +90].
p3_longitudereal✔️The longitude value in degrees of the second geospatial coordinate. A valid value is in the range [-180, +180].
p3_latitudereal✔️The latitude value in degrees of the second geospatial coordinate. A valid value is in the range [-90, +90].

Returns

An angle in radians in range [0, 2pi) between two lines [p1, p2] and [p2, p3]. The angle is measured CW from the first line to the Second line.

Examples

The following example calculates the angle in radians.

print angle_in_radians = geo_angle(0, 10, 0,5, 3,-10)

Output

angle_in_radians
2.94493843406882

The following example calculates the angle in degrees.

let angle_in_radians = geo_angle(0, 10, 0,5, 3,-10);
print angle_in_degrees = degrees(angle_in_radians)

Output

angle_in_degrees
168.732543198009

The following example returns null because 1st point equals to 2nd point.

print is_null = isnull(geo_angle(0, 10, 0, 10, 3, -10))

Output

is_null
True

2 - geo_azimuth()

Learn how to use the geo_azimuth() function to calculate the angle between the true north and a line on Earth.

Calculates clockwise angle in radians between the line from point1 to true north and a line from point1 to point2 on Earth.

Syntax

geo_azimuth(p1_longitude,p1_latitude,p2_longitude,p2_latitude)

Parameters

NameTypeRequiredDescription
p1_longitudereal✔️The longitude value in degrees of the first geospatial coordinate. A valid value is in the range [-180, +180].
p1_latitudereal✔️The latitude value in degrees of the first geospatial coordinate. A valid value is in the range [-90, +90].
p2_longitudereal✔️The longitude value in degrees of the second geospatial coordinate. A valid value is in the range [-180, +180].
p2_latitudereal✔️The latitude value in degrees of the second geospatial coordinate. A valid value is in the range [-90, +90].

Returns

An angle in radians between the line from point p1 to true north and line [p1, p2]. The angle is measured clockwise.

Examples

The following example calculates azimuth in radians.

print azimuth_in_radians = geo_azimuth(5, 10, 10, -40)

Output

azimuth_in_radians
3.05459939796449

The following example calculates azimuth in degrees.

let azimuth_in_radians = geo_azimuth(5, 10, 10, -40);
print azimuth_in_degrees = degrees(azimuth_in_radians);

Output

azimuth_in_degrees
175.015653606568

The following example considers a truck that emits telemetry of its location while it travels and looks for its travel direction.

let get_direction = (azimuth:real)
{
    let pi = pi();
    iff(azimuth < pi/2,   "North-East",
    iff(azimuth < pi,     "South-East",
    iff(azimuth < 3*pi/2, "South-West",
                          "North-West")));
};
datatable(timestamp:datetime, lng:real, lat:real)
[
    datetime(2024-01-01T00:01:53.048506Z), -115.4036607693417, 36.40551631046261,
    datetime(2024-01-01T00:02:53.048506Z), -115.3256807623232, 36.34102142760111,
    datetime(2024-01-01T00:03:53.048506Z), -115.2732290602112, 36.28458914829917,
    datetime(2024-01-01T00:04:53.048506Z), -115.2513186233914, 36.27622394664352,
    datetime(2024-01-01T00:05:53.048506Z), -115.2352055633212, 36.27545547038515,
    datetime(2024-01-01T00:06:53.048506Z), -115.1894341934856, 36.28266934431671,
    datetime(2024-01-01T00:07:53.048506Z), -115.1054318118468, 36.28957085435267,
    datetime(2024-01-01T00:08:53.048506Z), -115.0648614339413, 36.28110743285072,
    datetime(2024-01-01T00:09:53.048506Z), -114.9858032867736, 36.29780696509714,
    datetime(2024-01-01T00:10:53.048506Z), -114.9016966527561, 36.36556196813566,
]
| sort by timestamp asc 
| extend prev_lng = prev(lng), prev_lat = prev(lat)
| where isnotnull(prev_lng) and isnotnull(prev_lat)
| extend direction = get_direction(geo_azimuth(prev_lng, prev_lat, lng, lat))
| project direction, lng, lat
| render scatterchart with (kind = map)

Output

Azimuth between two consecutive locations.

The following example returns true because the first point equals the second point.

print is_null = isnull(geo_azimuth(5, 10, 5, 10))

Output

is_null
true

3 - geo_distance_2points()

Learn how to use the geo_distance_2points() function to calculate the shortest distance between two geospatial coordinates on Earth.

Calculates the shortest distance in meters between two geospatial coordinates on Earth.

Syntax

geo_distance_2points(p1_longitude,p1_latitude,p2_longitude,p2_latitude)

Parameters

NameTypeRequiredDescription
p1_longitudereal✔️The longitude value in degrees of the first geospatial coordinate. A valid value is in the range [-180, +180].
p1_latitudereal✔️The latitude value in degrees of the first geospatial coordinate. A valid value is in the range [-90, +90].
p2_longitudereal✔️The longitude value in degrees of the second geospatial coordinate. A valid value is in the range [-180, +180].
p2_latitudereal✔️The latitude value in degrees of the second geospatial coordinate. A valid value is in the range [-90, +90].

Returns

The shortest distance, in meters, between two geographic locations on Earth. If the coordinates are invalid, the query produces a null result.

Examples

The following example finds the shortest distance between Seattle and Los Angeles.

Distance between Seattle and Los Angeles.

print distance_in_meters = geo_distance_2points(-122.407628, 47.578557, -118.275287, 34.019056)

Output

distance_in_meters
1546754.35197381

The following example finds an approximation of the shortest path from Seattle to London. The line consists of coordinates along the LineString and within 500 meters from it.

range i from 1 to 1000000 step 1
| project lng = rand() * real(-122), lat = rand() * 90
| where lng between(real(-122) .. 0) and lat between(47 .. 90)
| where geo_distance_point_to_line(lng,lat,dynamic({"type":"LineString","coordinates":[[-122,47],[0,51]]})) < 500
| render scatterchart with (kind=map)

Output

Screenshot of the Seattle to London LineString.

The following example finds all rows in which the shortest distance between two coordinates is between one meter and 11 meters.

StormEvents
| extend distance_1_to_11m = geo_distance_2points(BeginLon, BeginLat, EndLon, EndLat)
| where distance_1_to_11m between (1 .. 11)
| project distance_1_to_11m

Output

distance_1_to_11m
10.5723100154958
7.92153588248414

The following example returns a null result because of the invalid coordinate input.

print distance = geo_distance_2points(300,1,1,1)

Output

distance

4 - geo_distance_point_to_line()

Learn how to use the geo_distance_point_to_line() function to calculate the shortest distance between a coordinate and a line or multiline on Earth.

Calculates the shortest distance in meters between a coordinate and a line or multiline on Earth.

Syntax

geo_distance_point_to_line(longitude,latitude,lineString)

Parameters

NameTypeRequiredDescription
longitudereal✔️The geospatial coordinate longitude value in degrees. A valid value is in the range [-180, +180].
latitudereal✔️The geospatial coordinate latitude value in degrees. A valid value is in the range [-90, +90].
lineStringdynamic✔️A line or multiline in the GeoJSON format.

Returns

The shortest distance, in meters, between a coordinate and a line or multiline on Earth. If the coordinate or lineString are invalid, the query produces a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2],…, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices is chosen.

Examples

Shortest distance to airport

The following example finds the shortest distance between North Las Vegas Airport and a nearby road.

Screenshot of a map showing the distance between North Las Vegas Airport and a specific road.

print distance_in_meters = geo_distance_point_to_line(-115.199625, 36.210419, dynamic({ "type":"LineString","coordinates":[[-115.115385,36.229195],[-115.136995,36.200366],[-115.140252,36.192470],[-115.143558,36.188523],[-115.144076,36.181954],[-115.154662,36.174483],[-115.166431,36.176388],[-115.183289,36.175007],[-115.192612,36.176736],[-115.202485,36.173439],[-115.225355,36.174365]]}))

Output

distance_in_meters
3797.88887253334

Storm events across the south coast

The following example finds storm events along the US south coast filtered by a maximum distance of 5 km from the defined shore line.

let southCoast = dynamic({"type":"LineString","coordinates":[[-97.18505859374999,25.997549919572112],[-97.58056640625,26.96124577052697],[-97.119140625,27.955591004642553],[-94.04296874999999,29.726222319395504],[-92.98828125,29.82158272057499],[-89.18701171875,29.11377539511439],[-89.384765625,30.315987718557867],[-87.5830078125,30.221101852485987],[-86.484375,30.4297295750316],[-85.1220703125,29.6880527498568],[-84.00146484374999,30.14512718337613],[-82.6611328125,28.806173508854776],[-82.81494140625,28.033197847676377],[-82.177734375,26.52956523826758],[-80.9912109375,25.20494115356912]]});
StormEvents
| project BeginLon, BeginLat, EventType
| where geo_distance_point_to_line(BeginLon, BeginLat, southCoast) < 5000
| render scatterchart with (kind=map)

Output

Screenshot of rendered storm events along the south coast of the US.

New York taxi pickups

The following example finds New York taxi pickups filtered by a maximum distance of 0.1 meters from the defined multiline.

let MadisonAve = dynamic({"type":"MultiLineString","coordinates":[[[-73.9879823,40.7408625],[-73.9876492,40.7413345],[-73.9874982,40.7415046],[-73.9870343,40.7421446],[-73.9865812,40.7427655],[-73.9861292,40.7433756],[-73.9856813,40.7439956],[-73.9854932,40.7442606],[-73.9852232,40.7446216],[-73.9847903,40.7452305],[-73.9846232,40.7454536],[-73.9844803,40.7456606],[-73.9843413,40.7458585],[-73.9839533,40.7463955],[-73.9839002,40.7464696],[-73.9837683,40.7466566],[-73.9834342,40.7471015],[-73.9833833,40.7471746],[-73.9829712,40.7477686],[-73.9824752,40.7484255],[-73.9820262,40.7490436],[-73.9815623,40.7496566],[-73.9811212,40.7502796],[-73.9809762,40.7504976],[-73.9806982,40.7509255],[-73.9802752,40.7515216],[-73.9798033,40.7521795],[-73.9795863,40.7524656],[-73.9793082,40.7528316],[-73.9787872,40.7534725],[-73.9783433,40.7540976],[-73.9778912,40.7547256],[-73.9774213,40.7553365],[-73.9769402,40.7559816],[-73.9764622,40.7565766],[-73.9760073,40.7572036],[-73.9755592,40.7578366],[-73.9751013,40.7584665],[-73.9746532,40.7590866],[-73.9741902,40.7597326],[-73.9737632,40.7603566],[-73.9733032,40.7609866],[-73.9728472,40.7616205],[-73.9723422,40.7622826],[-73.9718672,40.7629556],[-73.9714042,40.7635726],[-73.9709362,40.7642185],[-73.9705282,40.7647636],[-73.9704903,40.7648196],[-73.9703342,40.7650355],[-73.9701562,40.7652826],[-73.9700322,40.7654535],[-73.9695742,40.7660886],[-73.9691232,40.7667166],[-73.9686672,40.7673375],[-73.9682142,40.7679605],[-73.9677482,40.7685786],[-73.9672883,40.7692076],[-73.9668412,40.7698296],[-73.9663882,40.7704605],[-73.9659222,40.7710936],[-73.9654262,40.7717756],[-73.9649292,40.7724595],[-73.9644662,40.7730955],[-73.9640012,40.7737285],[-73.9635382,40.7743615],[-73.9630692,40.7749936],[-73.9626122,40.7756275],[-73.9621172,40.7763106],[-73.9616111,40.7769896],[-73.9611552,40.7776245],[-73.9606891,40.7782625],[-73.9602212,40.7788866],[-73.9597532,40.7795236],[-73.9595842,40.7797445],[-73.9592942,40.7801635],[-73.9591122,40.7804105],[-73.9587982,40.7808305],[-73.9582992,40.7815116],[-73.9578452,40.7821455],[-73.9573802,40.7827706],[-73.9569262,40.7833965],[-73.9564802,40.7840315],[-73.9560102,40.7846486],[-73.9555601,40.7852755],[-73.9551221,40.7859005],[-73.9546752,40.7865426],[-73.9542571,40.7871505],[-73.9541771,40.7872335],[-73.9540892,40.7873366],[-73.9536971,40.7879115],[-73.9532792,40.7884706],[-73.9532142,40.7885205],[-73.9531522,40.7885826],[-73.9527382,40.7891785],[-73.9523081,40.7897545],[-73.9518332,40.7904115],[-73.9513721,40.7910435],[-73.9509082,40.7916695],[-73.9504602,40.7922995],[-73.9499882,40.7929195],[-73.9495051,40.7936045],[-73.9490071,40.7942835],[-73.9485542,40.7949065],[-73.9480832,40.7955345],[-73.9476372,40.7961425],[-73.9471772,40.7967915],[-73.9466841,40.7974475],[-73.9453432,40.7992905],[-73.9448332,40.7999835],[-73.9443442,40.8006565],[-73.9438862,40.8012945],[-73.9434262,40.8019196],[-73.9431412,40.8023325],[-73.9429842,40.8025585],[-73.9425691,40.8031855],[-73.9424401,40.8033609],[-73.9422987,40.8035533],[-73.9422013,40.8036857],[-73.9421022,40.8038205],[-73.9420024,40.8039552],[-73.9416372,40.8044485],[-73.9411562,40.8050725],[-73.9406471,40.8057176],[-73.9401481,40.8064135],[-73.9397022,40.8070255],[-73.9394081,40.8074155],[-73.9392351,40.8076495],[-73.9387842,40.8082715],[-73.9384681,40.8087086],[-73.9383211,40.8089025],[-73.9378792,40.8095215],[-73.9374011,40.8101795],[-73.936405,40.8115707],[-73.9362328,40.8118098]],[[-73.9362328,40.8118098],[-73.9362432,40.8118567],[-73.9361239,40.8120222],[-73.9360302,40.8120805]],[[-73.9362328,40.8118098],[-73.9361571,40.8118294],[-73.9360443,40.8119993],[-73.9360302,40.8120805]],[[-73.9360302,40.8120805],[-73.9359423,40.8121378],[-73.9358551,40.8122385],[-73.9352181,40.8130815],[-73.9348702,40.8135515],[-73.9347541,40.8137145],[-73.9346332,40.8138615],[-73.9345542,40.8139595],[-73.9344981,40.8139945],[-73.9344571,40.8140165],[-73.9343962,40.8140445],[-73.9343642,40.8140585],[-73.9343081,40.8140725],[-73.9341971,40.8140895],[-73.9341041,40.8141005],[-73.9340022,40.8140965],[-73.9338442,40.8141005],[-73.9333712,40.8140895],[-73.9325541,40.8140755],[-73.9324561,40.8140705],[-73.9324022,40.8140695]],[[-73.9360302,40.8120805],[-73.93605,40.8121667],[-73.9359632,40.8122805],[-73.9353631,40.8130795],[-73.9351482,40.8133625],[-73.9350072,40.8135415],[-73.9347441,40.8139168],[-73.9346611,40.8140125],[-73.9346101,40.8140515],[-73.9345401,40.8140965],[-73.9344381,40.8141385],[-73.9343451,40.8141555],[-73.9342991,40.8141675],[-73.9341552,40.8141985],[-73.9338601,40.8141885],[-73.9333991,40.8141815],[-73.9323981,40.8141665]]]});
nyc_taxi
| project pickup_longitude, pickup_latitude
| where geo_distance_point_to_line(pickup_longitude, pickup_latitude, MadisonAve) <= 0.1
| take 100
| render scatterchart with (kind=map)

Output

Screenshot of rendered NYC taxi pickups on Madison Ave.

The following example folds many lines into one multiline and queries this multiline. The query finds all taxi pickups that happened 10 km away from all roads in Manhattan.

let ManhattanRoads =
    datatable(features:dynamic)
    [
        dynamic({"type":"Feature","properties":{"Label":"145thStreetBrg"},"geometry":{"type":"MultiLineString","coordinates":[[[-73.9322259,40.8194635],[-73.9323259,40.8194743],[-73.9323973,40.8194779]]]}}),
        dynamic({"type":"Feature","properties":{"Label":"W120thSt"},"geometry":{"type":"MultiLineString","coordinates":[[[-73.9619541,40.8104844],[-73.9621542,40.8105725],[-73.9630542,40.8109455],[-73.9635902,40.8111714],[-73.9639492,40.8113174],[-73.9640502,40.8113705]]]}}),
        dynamic({"type":"Feature","properties":{"Label":"1stAve"},"geometry":{"type":"MultiLineString","coordinates":[[[-73.9704124,40.748033],[-73.9702043,40.7480906],[-73.9696892,40.7487346],[-73.9695012,40.7491976],[-73.9694522,40.7493196]],[[-73.9699932,40.7488636],[-73.9694522,40.7493196]],[[-73.9694522,40.7493196],[-73.9693113,40.7494946],[-73.9688832,40.7501056],[-73.9686562,40.7504196],[-73.9684231,40.7507476],[-73.9679832,40.7513586],[-73.9678702,40.7514986]],[[-73.9676833,40.7520426],[-73.9675462,40.7522286],[-73.9673532,40.7524976],[-73.9672892,40.7525906],[-73.9672122,40.7526806]]]}})
        // ... more roads ...
    ];
let allRoads=toscalar(
    ManhattanRoads
    | project road_coordinates=features.geometry.coordinates
    | summarize make_list(road_coordinates)
    | project multiline = bag_pack("type","MultiLineString", "coordinates", list_road_coordinates));
nyc_taxi
| project pickup_longitude, pickup_latitude
| where pickup_longitude != 0 and pickup_latitude != 0
| where geo_distance_point_to_line(pickup_longitude, pickup_latitude, parse_json(allRoads)) > 10000
| take 10
| render scatterchart with (kind=map)

Output

Screenshot of a query map rendering example of lines folded into a multiline. The example is all taxi pickups 10 km away from all Manhattan roads.

Invalid LineString

The following example returns a null result because of the invalid LineString input.

print distance_in_meters = geo_distance_point_to_line(1,1, dynamic({ "type":"LineString"}))

Output

distance_in_meters

Invalid coordinate

The following example returns a null result because of the invalid coordinate input.

print distance_in_meters = geo_distance_point_to_line(300, 3, dynamic({ "type":"LineString","coordinates":[[1,1],[2,2]]}))

Output

distance_in_meters

5 - geo_distance_point_to_polygon()

Learn how to use the geo_distance_point_to_polygon() function to calculate the shortest distance between a coordinate and a polygon or a multipolygon on Earth.

Calculates the shortest distance between a coordinate and a polygon or a multipolygon on Earth.

Syntax

geo_distance_point_to_polygon(longitude,latitude,polygon)

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate, longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate, latitude value in degrees. Valid value is a real number and in the range [-90, +90].
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

The shortest distance, in meters, between a coordinate and a polygon or a multipolygon on Earth. If polygon contains point, the distance will be 0. If the coordinates or polygons are invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [LinearRingShell, LinearRingHole_1, …, LinearRingHole_N]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1,…, LinearRingHole_N],…, [LinearRingShell, LinearRingHole_1,…, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon doesn’t necessarily contain its vertices.

Examples

The following example calculates shortest distance in meters from some location in NYC to Central Park.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print geo_distance_point_to_polygon(-73.9839, 40.7705, central_park)

Output

print_0
259.940756070596

The following example enriches the data with distance.

let multipolygon = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.991460000000131,40.731738000000206],[-73.992854491775518,40.730082566051351],[-73.996772,40.725432000000154],[-73.997634685522883,40.725786309886963],[-74.002855946639244,40.728346630056791],[-74.001413,40.731065000000207],[-73.996796995070824,40.73736378205173],[-73.991724524037934,40.735245208931886],[-73.990703782359589,40.734781896080477],[-73.991460000000131,40.731738000000206]]],[[[-73.958357552055688,40.800369095633819],[-73.98143901556422,40.768762584141953],[-73.981548752788598,40.7685590292784],[-73.981565335901905,40.768307084720796],[-73.981754418060945,40.768399727738668],[-73.982038573548124,40.768387823012056],[-73.982268248204349,40.768298621883247],[-73.982384797518051,40.768097213086911],[-73.982320919746599,40.767894461792181],[-73.982155532845766,40.767756204474757],[-73.98238873834039,40.767411004834273],[-73.993650353659021,40.772145571634361],[-73.99415893763998,40.772493009137818],[-73.993831082030937,40.772931787850908],[-73.993891252437052,40.772955194876722],[-73.993962585514595,40.772944653908901],[-73.99401262480508,40.772882846631894],[-73.994122058082397,40.77292405902601],[-73.994136652588594,40.772901870174394],[-73.994301342391154,40.772970028663913],[-73.994281535134448,40.77299380206933],[-73.994376552751078,40.77303955110149],[-73.994294029824005,40.773156243992048],[-73.995023275860802,40.773481196576356],[-73.99508939189289,40.773388475039134],[-73.995013963716758,40.773358035426909],[-73.995050284699261,40.773297153189958],[-73.996240651898916,40.773789791397689],[-73.996195837470992,40.773852356184044],[-73.996098807369748,40.773951805299085],[-73.996179459973888,40.773986954351571],[-73.996095245226442,40.774086186437756],[-73.995572265161172,40.773870731394297],[-73.994017424135961,40.77321375261053],[-73.993935876811335,40.773179512586211],[-73.993861942928888,40.773269531698837],[-73.993822393527211,40.773381758622882],[-73.993767019318497,40.773483981224835],[-73.993698463744295,40.773562141052594],[-73.993358326468751,40.773926888327956],[-73.992622663865575,40.774974056037109],[-73.992577842766124,40.774956016359418],[-73.992527743951555,40.775002110439829],[-73.992469745815342,40.775024159551755],[-73.992403837191887,40.775018140390664],[-73.99226708903538,40.775116033858794],[-73.99217809026365,40.775279293897171],[-73.992059084937338,40.775497598192516],[-73.992125372394938,40.775509075053385],[-73.992226867797001,40.775482211026116],[-73.992329346608813,40.775468900958522],[-73.992361756801131,40.775501899766638],[-73.992386042960277,40.775557180424634],[-73.992087684712729,40.775983970821372],[-73.990927174149746,40.777566878763238],[-73.99039616003671,40.777585065679204],[-73.989461267506471,40.778875124584417],[-73.989175778438053,40.779287524015778],[-73.988868617400072,40.779692922911607],[-73.988871874499793,40.779713738253008],[-73.989219022880576,40.779697895209402],[-73.98927785904425,40.779723439271038],[-73.989409054180143,40.779737706471963],[-73.989498614927044,40.779725044389757],[-73.989596493388234,40.779698146683387],[-73.989679812902509,40.779677568658038],[-73.989752702937935,40.779671244211556],[-73.989842247806507,40.779680752670664],[-73.990040102120489,40.779707677698219],[-73.990137977524839,40.779699769704784],[-73.99033584033225,40.779661794394983],[-73.990430598697046,40.779664973055503],[-73.990622199396725,40.779676064914298],[-73.990745069505479,40.779671328184051],[-73.990872114282197,40.779646007643876],[-73.990961672224358,40.779639683751753],[-73.991057472829539,40.779652352625774],[-73.991157429497036,40.779669775606465],[-73.991242817404469,40.779671367084504],[-73.991255318289745,40.779650782516491],[-73.991294887120119,40.779630209208889],[-73.991321967649895,40.779631796041372],[-73.991359455569423,40.779585883337383],[-73.991551059227476,40.779574821437407],[-73.99141982585985,40.779755280287233],[-73.988886144117032,40.779878898532999],[-73.988939656706265,40.779956178440393],[-73.988926103530844,40.780059292013632],[-73.988911680264692,40.780096037146606],[-73.988919261468567,40.780226094343945],[-73.988381050202634,40.780981074045783],[-73.988232413846987,40.781233144215555],[-73.988210420831663,40.781225482542055],[-73.988140000000143,40.781409000000224],[-73.988041288067166,40.781585961353777],[-73.98810029382463,40.781602878305286],[-73.988076449145055,40.781650935001608],[-73.988018059972219,40.781634188810422],[-73.987960792842145,40.781770987031535],[-73.985465811970457,40.785360700575431],[-73.986172704965611,40.786068452258647],[-73.986455862401996,40.785919219081421],[-73.987072345615601,40.785189638820121],[-73.98711901394276,40.785210319004058],[-73.986497781023601,40.785951202887254],[-73.986164628806279,40.786121882448327],[-73.986128422486075,40.786239001331111],[-73.986071135219746,40.786240706026611],[-73.986027274789123,40.786228964236727],[-73.986097637849426,40.78605822569795],[-73.985429321269592,40.785413942184597],[-73.985081137732209,40.785921935110366],[-73.985198833254501,40.785966552197777],[-73.985170502389906,40.78601333415817],[-73.985216218673656,40.786030501816427],[-73.98525509797993,40.785976205511588],[-73.98524273937646,40.785972572653328],[-73.98524962933017,40.785963139855845],[-73.985281779186749,40.785978620950075],[-73.985240032884533,40.786035858136792],[-73.985683885242182,40.786222123919686],[-73.985717529004575,40.786175994668795],[-73.985765660297687,40.786196274858618],[-73.985682871922691,40.786309786213067],[-73.985636270930442,40.786290150649279],[-73.985670722564691,40.786242911993817],[-73.98520511880038,40.786047669212785],[-73.985211035607492,40.786039554883686],[-73.985162639946992,40.786020999769754],[-73.985131636312062,40.786060297019972],[-73.985016964065125,40.78601423719563],[-73.984655078830457,40.786534741807841],[-73.985743787901043,40.786570082854738],[-73.98589227228328,40.786426529019593],[-73.985942854994988,40.786452847880334],[-73.985949561556794,40.78648711396653],[-73.985812373526713,40.786616865357047],[-73.985135209703174,40.78658761889551],[-73.984619428584324,40.786586016349787],[-73.981952458164173,40.790393724337193],[-73.972823037363767,40.803428052816756],[-73.971036786332192,40.805918478839672],[-73.966701,40.804169000000186],[-73.959647,40.801156000000113],[-73.958508540159471,40.800682279767472],[-73.95853274080838,40.800491362464697],[-73.958357552055688,40.800369095633819]]],[[[-73.943592454622546,40.782747908206574],[-73.943648235390199,40.782656161333449],[-73.943870759887162,40.781273026571704],[-73.94345932494096,40.780048275653243],[-73.943213862652243,40.779317588660199],[-73.943004239504688,40.779639495474292],[-73.942716005450905,40.779544169476175],[-73.942712374762181,40.779214856940001],[-73.942535563208608,40.779090956062532],[-73.942893408188027,40.778614093246276],[-73.942438481745029,40.777315235766039],[-73.942244919522594,40.777104088947254],[-73.942074188038887,40.776917846977142],[-73.942002667222781,40.776185317382648],[-73.942620205199006,40.775180871576474],[-73.94285645694552,40.774796600349191],[-73.94293043781397,40.774676268036011],[-73.945870899588215,40.771692257932997],[-73.946618690150586,40.77093339256956],[-73.948664164778933,40.768857624399587],[-73.950069793030679,40.767025088383498],[-73.954418260786071,40.762184104951245],[-73.95650786241211,40.760285256574043],[-73.958787773424007,40.758213471309809],[-73.973015157270069,40.764278692864671],[-73.955760332998182,40.787906554459667],[-73.944023,40.782960000000301],[-73.943592454622546,40.782747908206574]]]]});
let coordinates = 
    datatable(longitude:real, latitude:real, description:string)
    [
        real(-73.9741), 40.7914, 'Upper West Side',
        real(-73.9950), 40.7340, 'Greenwich Village',
        real(-73.8743), 40.7773, 'LaGuardia Airport',
    ];
coordinates
| extend distance = geo_distance_point_to_polygon(longitude, latitude, multipolygon)

Output

longitudelatitudedescriptiondistance
-73.974140.7914Upper West Side0
-73.99540.734Greenwich Village0
-73.874340.7773LaGuardia Airport5702.15731467514

The following example finds all states that are within 200-km distance, excluding state that contains the point.

US_States
| project name = features.properties.NAME, polygon = features.geometry
| project name, distance = ceiling(geo_distance_point_to_polygon(-111.905, 40.634, polygon) / 1000)
| where distance < 200 and distance > 0

Output

namedistance
Idaho152
Nevada181
Wyoming83

The following example will return a null result because of the invalid coordinate input.

print distance = geo_distance_point_to_polygon(500,1,dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,1],[0,0]]]}))

Output

distance

The following example will return a null result because of the invalid polygon input.

print distance = geo_distance_point_to_polygon(1,1,dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]}))

Output

distance

6 - geo_geohash_neighbors()

Learn how to use the geo_geohash_neighbors() function to calculate geohash neighbors.

Calculates Geohash neighbors.

Read more about geohash.

Syntax

geo_geohash_neighbors(geohash)

Parameters

NameTypeRequiredDescription
geohashstring✔️A geohash value as it was calculated by geo_point_to_geohash(). The geohash string must be between 1 and 18 characters.

Returns

An array of Geohash neighbors. If the Geohash is invalid, the query produces a null result.

Examples

The following example calculates Geohash neighbors.

print neighbors = geo_geohash_neighbors('sunny')

Output

neighbors
[“sunnt”,“sunpj”,“sunnx”,“sunpn”,“sunnv”,“sunpp”,“sunnz”,“sunnw”]

The following example calculates an array of input Geohash with its neighbors.

let geohash = 'sunny';
print cells = array_concat(pack_array(geohash), geo_geohash_neighbors(geohash))

Output

cells
[“sunny”,“sunnt”,“sunpj”,“sunnx”,“sunpn”,“sunnv”,“sunpp”,“sunnz”,“sunnw”]

The following example calculates Geohash polygons GeoJSON geometry collection.

let geohash = 'sunny';
print cells = array_concat(pack_array(geohash), geo_geohash_neighbors(geohash))
| mv-expand cells to typeof(string)
| project polygons = geo_geohash_to_polygon(cells)
| summarize arr = make_list(polygons)
| project geojson = bag_pack("type", "Feature","geometry", bag_pack("type", "GeometryCollection", "geometries", arr), "properties", bag_pack("name", "polygons"))

Output

geojson
{“type”: “Feature”,“geometry”: {“type”: “GeometryCollection”,“geometries”: [
{“type”:“Polygon”,“coordinates”:[[[42.451171875,23.6865234375],[42.4951171875,23.6865234375],[42.4951171875,23.73046875],[42.451171875,23.73046875],[42.451171875,23.6865234375]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4072265625,23.642578125],[42.451171875,23.642578125],[42.451171875,23.6865234375],[42.4072265625,23.6865234375],[42.4072265625,23.642578125]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4072265625,23.73046875],[42.451171875,23.73046875],[42.451171875,23.7744140625],[42.4072265625,23.7744140625],[42.4072265625,23.73046875]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4951171875,23.642578125],[42.5390625,23.642578125],[42.5390625,23.6865234375],[42.4951171875,23.6865234375],[42.4951171875,23.642578125]]]},
{“type”:“Polygon”,“coordinates”:[[[42.451171875,23.73046875],[42.4951171875,23.73046875],[42.4951171875,23.7744140625],[42.451171875,23.7744140625],[42.451171875,23.73046875]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4072265625,23.6865234375],[42.451171875,23.6865234375],[42.451171875,23.73046875],[42.4072265625,23.73046875],[42.4072265625,23.6865234375]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4951171875,23.73046875],[42.5390625,23.73046875],[42.5390625,23.7744140625],[42.4951171875,23.7744140625],[42.4951171875,23.73046875]]]},
{“type”:“Polygon”,“coordinates”:[[[42.4951171875,23.6865234375],[42.5390625,23.6865234375],[42.5390625,23.73046875],[42.4951171875,23.73046875],[42.4951171875,23.6865234375]]]},
{“type”:“Polygon”,“coordinates”:[[[42.451171875,23.642578125],[42.4951171875,23.642578125],[42.4951171875,23.6865234375],[42.451171875,23.6865234375],[42.451171875,23.642578125]]]}]},
“properties”: {“name”: “polygons”}}

The following example calculates polygon unions that represent Geohash and its neighbors.

let h3cell = 'sunny';
print cells = array_concat(pack_array(h3cell), geo_geohash_neighbors(h3cell))
| mv-expand cells to typeof(string)
| project polygons = geo_geohash_to_polygon(cells)
| summarize arr = make_list(polygons)
| project polygon = geo_union_polygons_array(arr)

Output

polygon
{“type”:“Polygon”,“coordinates”:[[[42.4072265625,23.642578125],[42.451171875,23.642578125],[42.4951171875,23.642578125],[42.5390625,23.642578125],[42.5390625,23.686523437500004],[42.5390625,23.730468750000004],[42.5390625,23.7744140625],[42.4951171875,23.7744140625],[42.451171875,23.7744140625],[42.407226562499993,23.7744140625],[42.4072265625,23.73046875],[42.4072265625,23.6865234375],[42.4072265625,23.642578125]]]}

The following example returns true because of the invalid Geohash token input.

print invalid = isnull(geo_geohash_neighbors('a'))

Output

invalid
1

7 - geo_geohash_to_central_point()

Learn how to use the geo_geohash_to_central() function to calculate the geospatial coordinates that represent the center of a geohash rectangular area.

Calculates the geospatial coordinates that represent the center of a geohash rectangular area.

Read more about geohash.

Syntax

geo_geohash_to_central_point(geohash)

Parameters

NameTypeRequiredDescription
geohashstring✔️A geohash value as it was calculated by geo_point_to_geohash(). The geohash string must be between 1 and 18 characters.

Returns

The geospatial coordinate values in GeoJSON Format and of a dynamic data type. If the geohash is invalid, the query will produce a null result.

Examples

print point = geo_geohash_to_central_point("sunny")
| extend coordinates = point.coordinates
| extend longitude = coordinates[0], latitude = coordinates[1]

Output

pointcoordinateslongitudelatitude
{
“type”: “Point”,
“coordinates”: [
42.47314453125,
23.70849609375
]
}
[
42.47314453125,
23.70849609375
]
42.4731445312523.70849609375

The following example returns a null result because of the invalid geohash input.

print geohash = geo_geohash_to_central_point("a")

Output

geohash

You can use the geohash value to create a deep-link URL to Bing Maps by pointing to the geohash center point:

// Use string concatenation to create Bing Map deep-link URL from a geo-point
let point_to_map_url = (_point:dynamic, _title:string) 
{
    strcat('https://www.bing.com/maps?sp=point.', _point.coordinates[1] ,'_', _point.coordinates[0], '_', url_encode(_title)) 
};
// Convert geohash to center point, and then use 'point_to_map_url' to create Bing Map deep-link
let geohash_to_map_url = (_geohash:string, _title:string)
{
    point_to_map_url(geo_geohash_to_central_point(_geohash), _title)
};
print geohash = 'sv8wzvy7'
| extend url = geohash_to_map_url(geohash, "You are here")

Output

geohashurl
sv8wzvy7https://www.bing.com/maps?sp=point.32.15620994567871_34.80245590209961_You+are+here

8 - geo_geohash_to_polygon()

Learn how to use the geo_geohash_to_polygon() function to calculate the polygon that represents the geohash rectangular area.

Calculates the polygon that represents the geohash rectangular area.

Read more about geohash.

Syntax

geo_geohash_to_polygon(geohash)

Parameters

NameTypeRequiredDescription
geohashstring✔️A geohash value as it was calculated by geo_point_to_geohash(). The geohash string must be between 1 and 18 characters.

Returns

Polygon in GeoJSON Format and of a dynamic data type. If the geohash is invalid, the query will produce a null result.

Examples

print GeohashPolygon = geo_geohash_to_polygon("dr5ru");

Output

GeohashPolygon
{
“type”: “Polygon”,
“coordinates”: [
[[-74.00390625, 40.7373046875], [-73.9599609375, 40.7373046875], [-73.9599609375, 40.78125], [-74.00390625, 40.78125], [-74.00390625, 40.7373046875]]]
}

The following example assembles GeoJSON geometry collection of geohash polygons.

// Geohash GeoJSON collection
datatable(lng:real, lat:real)
[
    -73.975212, 40.789608,
    -73.916869, 40.818314,
    -73.989148, 40.743273,
]
| project geohash = geo_point_to_geohash(lng, lat, 5)
| project geohash_polygon = geo_geohash_to_polygon(geohash)
| summarize geohash_polygon_lst = make_list(geohash_polygon)
| project bag_pack(
    "type", "Feature",
    "geometry", bag_pack("type", "GeometryCollection", "geometries", geohash_polygon_lst),
    "properties", bag_pack("name", "Geohash polygons collection"))

Output

Column1
{
“type”: “Feature”,
“geometry”: {“type”: “GeometryCollection”,“geometries”: [
{“type”: “Polygon”, “coordinates”: [[[-74.00390625, 40.78125], [-73.9599609375, 40.78125], [-73.9599609375, 40.8251953125],[ -74.00390625, 40.8251953125], [ -74.00390625, 40.78125]]]},
{“type”: “Polygon”, “coordinates”: [[[ -73.9599609375, 40.78125], [-73.916015625, 40.78125], [-73.916015625, 40.8251953125], [-73.9599609375, 40.8251953125], [-73.9599609375, 40.78125]]]},
{“type”: “Polygon”, “coordinates”: [[[-74.00390625, 40.7373046875], [-73.9599609375, 40.7373046875], [-73.9599609375, 40.78125], [-74.00390625, 40.78125], [-74.00390625, 40.7373046875]]]}]
},
“properties”: {“name”: “Geohash polygons collection”
}}

The following example returns a null result because of the invalid geohash input.

print GeohashPolygon = geo_geohash_to_polygon("a");

Output

GeohashPolygon

9 - geo_h3cell_children()

Learn how to use the geo_h3cell_children() function to calculate the H3 cell children.

Calculates the H3 cell children.

Read more about H3 Cell.

Syntax

geo_h3cell_children(h3cell,resolution)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().
resolutionintDefines the requested children cells resolution. Supported values are in the range [1, 15]. If unspecified, an immediate children token will be calculated.

Returns

Array of H3 Cell children tokens. If the H3 Cell is invalid or child resolution is lower than given cell, the query will produce a null result.

Examples

print children = geo_h3cell_children('862a1072fffffff')

Output

children
[ “872a10728ffffff”, “872a10729ffffff”, “872a1072affffff”, “872a1072bffffff”, “872a1072cffffff”, “872a1072dffffff”, “872a1072effffff” ]

The following example counts children 3 levels below a given cell.

let h3_cell = '862a1072fffffff'; 
print children_count = array_length(geo_h3cell_children(h3_cell, geo_h3cell_level(h3_cell) + 3))

Output

children_count
343

The following example assembles GeoJSON geometry collection of H3 Cell children polygons.

print children = geo_h3cell_children('862a1072fffffff')
| mv-expand children to typeof(string)
| project child = geo_h3cell_to_polygon(children)
| summarize h3_hash_polygon_lst = make_list(child)
| project geojson = bag_pack(
    "type", "Feature",
    "geometry", bag_pack("type", "GeometryCollection", "geometries", h3_hash_polygon_lst),
    "properties", bag_pack("name", "H3 polygons collection"))

Output

geojson
{ “type”: “Feature”, “geometry”: { “type”: “GeometryCollection”, “geometries”: [ … … … ] }, “properties”: { “name”: “H3 polygons collection” }}

The following example returns true because of the invalid cell.

print is_null = isnull(geo_h3cell_children('abc'))

Output

is_null
1

The following example returns true because the level difference between cell and its children is more than 5.

print is_null = isnull(geo_h3cell_children(geo_point_to_h3cell(1, 1, 9), 15))

Output

is_null
1

10 - geo_h3cell_level()

Learn how to use the geo_h3cell_level() function to calculate the H3 cell resolution.

Calculates the H3 cell resolution.

Read more about H3 Cell.

Syntax

geo_h3cell_level(h3cell)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().

Returns

An integer that represents H3 Cell level. Valid level is in range [0, 15]. If the H3 Cell is invalid, the query will produce a null result.

Examples

print cell_res = geo_h3cell_level('862a1072fffffff')

Output

cell_res
6
print cell_res = geo_h3cell_level(geo_point_to_h3cell(1,1,10))

Output

cell_res
10

The following example returns true because of the invalid H3 Cell token input.

print invalid_res = isnull(geo_h3cell_level('abc'))

Output

invalid_res
1

11 - geo_h3cell_neighbors()

Learn how to use the geo_h3cell_neighbors() function to calculate the H3 cell neighbors.

Calculates the H3 cell neighbors.

Read more about H3 Cell.

Syntax

geo_h3cell_neighbors(h3cell)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().

Returns

An array of H3 cell neighbors. If the H3 Cell is invalid, the query will produce a null result.

Examples

The following example calculates H3 cell neighbors.

print neighbors = geo_h3cell_neighbors('862a1072fffffff')

Output

neighbors
[“862a10727ffffff”,“862a10707ffffff”,“862a1070fffffff”,“862a10777ffffff”,“862a100dfffffff”,“862a100d7ffffff”]

The following example calculates an array of input H3 cell with its neighbors.

let h3cell = '862a1072fffffff';
print cells = array_concat(pack_array(h3cell), geo_h3cell_neighbors(h3cell))

Output

cells
[“862a1072fffffff”,“862a10727ffffff”,“862a10707ffffff”,“862a1070fffffff”,“862a10777ffffff”,“862a100dfffffff”,“862a100d7ffffff”]

The following example calculates H3 cells polygons GeoJSON geometry collection.

let h3cell = '862a1072fffffff';
print cells = array_concat(pack_array(h3cell), geo_h3cell_neighbors(h3cell))
| mv-expand cells to typeof(string)
| project polygons = geo_h3cell_to_polygon(cells)
| summarize arr = make_list(polygons)
| project geojson = bag_pack("type", "Feature","geometry", bag_pack("type", "GeometryCollection", "geometries", arr), "properties", bag_pack("name", "polygons"))

Output

geojson
{“type”: “Feature”,“geometry”: {“type”: “GeometryCollection”,“geometries”: [
{“type”:“Polygon”,“coordinates”:[[[-74.0022744646159,40.735376026215022],[-74.046908029686236,40.727986222489115],[-74.060610712223664,40.696775140349033],[-74.029724408156682,40.672970047595463],[-73.985140983708192,40.680349049267583],[-73.971393761028622,40.71154393543933],[-74.0022744646159,40.735376026215022]]]},
{“type”:“Polygon”,“coordinates”:[[[-74.019448383546617,40.790439140236963],[-74.064132193843633,40.783038509825],[-74.077839665342211,40.751803958414136],[-74.046908029686236,40.727986222489115],[-74.0022744646159,40.735376026215022],[-73.988522328408948,40.766594382212254],[-74.019448383546617,40.790439140236963]]]},
{“type”:“Polygon”,“coordinates”:[[[-74.077839665342211,40.751803958414136],[-74.1224794808745,40.744383587828388],[-74.1361375042681,40.713156370029125],[-74.1052004095288,40.689365648097258],[-74.060610712223664,40.696775140349033],[-74.046908029686236,40.727986222489115],[-74.077839665342211,40.751803958414136]]]},
{“type”:“Polygon”,“coordinates”:[[[-74.060610712223664,40.696775140349033],[-74.1052004095288,40.689365648097258],[-74.118853750491638,40.658161927046628],[-74.0879619670209,40.634383824229609],[-74.043422283844933,40.641782462872115],[-74.029724408156682,40.672970047595463],[-74.060610712223664,40.696775140349033]]]},
{“type”:“Polygon”,“coordinates”:[[[-73.985140983708192,40.680349049267583],[-74.029724408156682,40.672970047595463],[-74.043422283844933,40.641782462872115],[-74.012581189358343,40.617990065981623],[-73.968047801220749,40.625358290164748],[-73.954305509472675,40.656529678451555],[-73.985140983708192,40.680349049267583]]]},
{“type”:“Polygon”,“coordinates”:[[[-73.926766604813565,40.718903205013063],[-73.971393761028622,40.71154393543933],[-73.985140983708192,40.680349049267583],[-73.954305509472675,40.656529678451555],[-73.909728515658443,40.663878222244435],[-73.895936872069854,40.69505685239637],[-73.926766604813565,40.718903205013063]]]},
{“type”:“Polygon”,“coordinates”:[[[-73.943844904976629,40.773964402038523],[-73.988522328408948,40.766594382212254],[-74.0022744646159,40.735376026215022],[-73.971393761028622,40.71154393543933],[-73.926766604813565,40.718903205013063],[-73.912969923470314,40.750105305345329],[-73.943844904976629,40.773964402038523]]]}]},
“properties”: {“name”: “polygons”}}

The following example calculates polygon unions that represent H3 cell and its neighbors.

let h3cell = '862a1072fffffff';
print cells = array_concat(pack_array(h3cell), geo_h3cell_neighbors(h3cell))
| mv-expand cells to typeof(string)
| project polygons = geo_h3cell_to_polygon(cells)
| summarize arr = make_list(polygons)
| project polygon = geo_union_polygons_array(arr)

Output

polygon
{
“type”: “Polygon”,
“coordinates”: [[[ -73.926766604813565, 40.718903205013063],[ -73.912969923470314, 40.750105305345329],[ -73.943844904976629, 40.773964402038523],[ -73.988522328408948, 40.766594382212254],[ -74.019448383546617, 40.79043914023697],[ -74.064132193843633, 40.783038509825005],[ -74.077839665342211, 40.751803958414136],[ -74.1224794808745, 40.744383587828388],[ -74.1361375042681, 40.713156370029125],[ -74.1052004095288, 40.689365648097251],[ -74.118853750491638, 40.658161927046628],[ -74.0879619670209, 40.6343838242296],[ -74.043422283844933, 40.641782462872115],[ -74.012581189358343, 40.617990065981623],[ -73.968047801220749, 40.625358290164755],[ -73.954305509472675, 40.656529678451555],[ -73.909728515658443, 40.663878222244442],[ -73.895936872069854, 40.695056852396377],[ -73.926766604813565, 40.718903205013063]]]}

The following example returns true because of the invalid H3 Cell token input.

print invalid = isnull(geo_h3cell_neighbors('abc'))

Output

invalid
1

12 - geo_h3cell_parent()

Learn how to use the geo_h3cell_parent() function to calculate the H3 cell parent.

Calculates the H3 cell parent.

Read more about H3 Cell.

Syntax

geo_h3cell_parent(h3cell,resolution)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().
resolutionintDefines the requested children cells resolution. Supported values are in the range [0, 14]. If unspecified, an immediate children token will be calculated.

Returns

H3 Cell parent token string. If the H3 Cell is invalid or parent resolution is higher than given cell, the query will produce an empty result.

Examples

print parent_cell = geo_h3cell_parent('862a1072fffffff')

Output

parent_cell
852a1073fffffff

The following example calculates cell parent at level 1.

print parent_cell = geo_h3cell_parent('862a1072fffffff', 1)

Output

parent_cell
812a3ffffffffff
print parent_res = geo_h3cell_level(geo_h3cell_parent((geo_point_to_h3cell(1,1,10))))

Output

parent_res
9
print parent_res = geo_h3cell_level(geo_h3cell_parent(geo_point_to_h3cell(1,1,10), 3))

Output

parent_res
3

The following example produces an empty result because of the invalid cell input.

print invalid = isempty(geo_h3cell_parent('123'))

Output

invalid
1

The following example produces an empty result because of the invalid parent resolution.

print invalid = isempty(geo_h3cell_parent('862a1072fffffff', 100))

Output

invalid
1

The following example produces an empty result because parent can’t be of a higher resolution than child.

print invalid = isempty(geo_h3cell_parent('862a1072fffffff', 15))

Output

invalid
1

13 - geo_h3cell_rings()

Learn how to use the geo_h3cell_rings() function to calculate the H3 cell rings.

Calculates the H3 cell Rings.

Read more about H3 Cell.

Syntax

geo_h3cell_rings(h3cell,distance)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().
distanceint✔️Defines the maximum ring distance from given cell. Valid distance is in range [0, 142].

Returns

An ordered array of ring arrays where first ring contains the original cell, second ring contains neighboring cells, and so on. If either the H3 Cell or distance is invalid, the query produces a null result.

Examples

The following example produces rings up to distance 2.

print rings = geo_h3cell_rings('861f8894fffffff', 2)

Output

rings
[
[“861f8894fffffff”],
[“861f88947ffffff”,“861f8895fffffff”,“861f88867ffffff”,“861f8d497ffffff”,“861f8d4b7ffffff”,“861f8896fffffff”],
[“861f88967ffffff”,“861f88977ffffff”,“861f88957ffffff”,“861f8882fffffff”,“861f88877ffffff”,“861f88847ffffff”,“861f8886fffffff”,“861f8d49fffffff”,“861f8d487ffffff”,“861f8d4a7ffffff”,“861f8d59fffffff”,“861f8d597ffffff”]
]

The following example produces all cells at level 1 (all neighbors).

print neighbors = geo_h3cell_rings('861f8894fffffff', 1)[1]

Output

neighbors
[“861f88947ffffff”, “861f8895fffffff”, “861f88867ffffff”, “861f8d497ffffff”, “861f8d4b7ffffff”,“861f8896fffffff”]

The following example produces list of cells from all rings.

print rings = geo_h3cell_rings('861f8894fffffff', 1)
| mv-apply rings on 
(
  summarize cells = make_list(rings)
)

Output

cells
[“861f8894fffffff”,“861f88947ffffff”,“861f8895fffffff”,“861f88867ffffff”,“861f8d497ffffff”,“861f8d4b7ffffff”,“861f8896fffffff”]

The following example assembles GeoJSON geometry collection of all cells.

print rings = geo_h3cell_rings('861f8894fffffff', 1)
| mv-apply rings on 
(
  summarize make_list(rings)
)
| mv-expand list_rings to typeof(string)
| project polygon = geo_h3cell_to_polygon(list_rings)
| summarize polygon_lst = make_list(polygon)
| project geojson = bag_pack(
    "type", "Feature",
    "geometry", bag_pack("type", "GeometryCollection", "geometries", polygon_lst),
    "properties", bag_pack("name", "H3 polygons collection"))

Output

geojson
{ “type”: “Feature”, “geometry”: { “type”: “GeometryCollection”, “geometries”: [ … … … ]}, “properties”: { “name”: “H3 polygons collection” }}

The following example returns true because of the invalid cell.

print is_null = isnull(geo_h3cell_rings('abc', 3))

Output

is_null
1

The following example returns true because of the invalid distance.

print is_null = isnull(geo_h3cell_rings('861f8894fffffff', 150))

Output

is_null
1

14 - geo_h3cell_to_central_point()

Learn how to use the geo_h3cell_to_central_point() function to calculate the geospatial coordinates that represent the center of an H3 cell.

Calculates the geospatial coordinates that represent the center of an H3 Cell.

Read more about H3 Cell.

Syntax

geo_h3cell_to_central_point(h3cell)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().

Returns

The geospatial coordinate values in GeoJSON Format and of a dynamic data type. If the H3 cell token is invalid, the query will produce a null result.

Examples

print h3cell = geo_h3cell_to_central_point("862a1072fffffff")

Output

h3cell
{
“type”: “Point”,
“coordinates”: [-74.016008479792447, 40.7041679083504]
}

The following example returns the longitude of the H3 Cell center point:

print longitude = geo_h3cell_to_central_point("862a1072fffffff").coordinates[0]

Output

longitude
-74.0160084797924

The following example returns a null result because of the invalid H3 cell token input.

print h3cell = geo_h3cell_to_central_point("1")

Output

h3cell

15 - geo_h3cell_to_polygon()

Learn how to use the geo_h3cell_to_polygon() function to calculate the polygon that represents the H3 Cell rectangular area.

Calculates the polygon that represents the H3 Cell rectangular area.

Read more about H3 Cell.

Syntax

geo_h3cell_to_polygon(h3cell)

Parameters

NameTypeRequiredDescription
h3cellstring✔️An H3 Cell token value as it was calculated by geo_point_to_h3cell().

Returns

Polygon in GeoJSON Format and of a dynamic data type. If the H3 Cell is invalid, the query will produce a null result.

Examples

print geo_h3cell_to_polygon("862a1072fffffff")

Output

print_0
{
“type”: “Polygon”,
“coordinates”: [[[-74.0022744646159, 40.735376026215022], [-74.046908029686236, 40.727986222489115], [-74.060610712223664, 40.696775140349033],[ -74.029724408156682, 40.672970047595463], [-73.985140983708192, 40.680349049267583],[ -73.971393761028622, 40.71154393543933], [-74.0022744646159, 40.735376026215022]]]
}

The following example assembles GeoJSON geometry collection of H3 Cell polygons.

// H3 cell GeoJSON collection
datatable(lng:real, lat:real)
[
    -73.956683, 40.807907,
    -73.916869, 40.818314,
    -73.989148, 40.743273,
]
| project h3_hash = geo_point_to_h3cell(lng, lat, 6)
| project h3_hash_polygon = geo_h3cell_to_polygon(h3_hash)
| summarize h3_hash_polygon_lst = make_list(h3_hash_polygon)
| project bag_pack(
    "type", "Feature",
    "geometry", bag_pack("type", "GeometryCollection", "geometries", h3_hash_polygon_lst),
    "properties", bag_pack("name", "H3 polygons collection"))

Output

Column1
{
“type”: “Feature”,
“geometry”: {“type”: “GeometryCollection”, “geometries”: [{“type”: “Polygon”,“coordinates”: [[[-73.9609635556213, 40.829061732419916], [-74.005691351383675, 40.821680937801922], [-74.019448383546617, 40.790439140236963], [-73.988522328408948, 40.766594382212254], [-73.943844904976629, 40.773964402038523], [-73.930043202964953, 40.805189944379514], [-73.9609635556213, 40.829061732419916]]]},
{“type”: “Polygon”, “coordinates”: [[[-73.902385078754875, 40.867671551513595], [-73.94715685019348, 40.860310688399885], [-73.9609635556213, 40.829061732419916], [-73.930043202964953, 40.805189944379514], [-73.885321931061725, 40.812540084842404 ], [-73.871470551071766, 40.843772725733125], [ -73.902385078754875, 40.867671551513595]]]},
{“type”: “Polygon”,“coordinates”: [[[-73.943844904976629, 40.773964402038523], [-73.988522328408948, 40.766594382212254], [-74.0022744646159, 40.735376026215022], [-73.971393761028622, 40.71154393543933], [-73.926766604813565, 40.718903205013063], [ -73.912969923470314, 40.750105305345329 ], [-73.943844904976629, 40.773964402038523]]]}]
},
“properties”: {“name”: “H3 polygons collection”}
}

The following example returns a null result because of the invalid H3 Cell token input.

print geo_h3cell_to_polygon("@")

Output

print_0

16 - geo_intersection_2lines()

Learn how to use the geo_intersection_2lines() function to calculate the intersection of two line strings or multiline strings.

Calculates the intersection of two lines or multilines.

Syntax

geo_intersection_2lines(lineString1,lineString2)

Parameters

NameTypeRequiredDescription
lineString1dynamic✔️A line or multiline in the GeoJSON format.
lineString2dynamic✔️A line or multiline in the GeoJSON format.

Returns

Intersection in GeoJSON Format and of a dynamic data type. If LineString or a MultiLineString are invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2],…, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2,…, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following example calculates intersection between two lines. In this case, the result is a point.

let lineString1 = dynamic({"type":"LineString","coordinates":[[-73.978929,40.785155],[-73.980903,40.782621]]});
let lineString2 = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275],[-73.974552,40.779761]]});
print intersection = geo_intersection_2lines(lineString1, lineString2)

Output

intersection
{“type”: “Point”,“coordinates”: [-73.979837116670978,40.783989289772165]}

The following example calculates intersection between two lines. In this case, the result is a line.

let line = dynamic({"type":"LineString","coordinates":[[-73.978929,40.785155],[-73.980903,40.782621]]});
print intersection = geo_intersection_2lines(line, line)

Output

intersection
{“type”: “LineString”,“coordinates”: [[ -73.978929, 40.785155],[ -73.980903, 40.782621]]}

The following two lines don’t intersect.

let lineString1 = dynamic({"type":"LineString","coordinates":[[1, 1],[2, 2]]});
let lineString2 = dynamic({"type":"LineString","coordinates":[[3, 3],[4, 4]]});
print intersection = geo_intersection_2lines(lineString1, lineString2)

Output

intersection
{“type”: “GeometryCollection”, “geometries”: []}

The following example will return a null result because one of lines is invalid.

let lineString1 = dynamic({"type":"LineString","coordinates":[[1, 1],[2, 2]]});
let lineString2 = dynamic({"type":"LineString","coordinates":[[3, 3]]});
print invalid = isnull(geo_intersection_2lines(lineString1, lineString2))

Output

invalid
1

17 - geo_intersection_2polygons()

Learn how to use the geo_intersection_2polygons() function to calculate the intersection of two polygons or multipolygons.

Calculates the intersection of two polygons or multipolygons.

Syntax

geo_intersection_2polygons(polygon1,polygon1)

Parameters

NameTypeRequiredDescription
polygon1dynamic✔️Polygon or multipolygon in the GeoJSON format.
polygon2dynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

Intersection in GeoJSON Format and of a dynamic data type. If Polygon or a MultiPolygon are invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ],…, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon contains its vertices.

Examples

The following example calculates intersection between two polygons. In this case, the result is a polygon.

let polygon1 = dynamic({"type":"Polygon","coordinates":[[[-73.9630937576294,40.77498840732385],[-73.963565826416,40.774383111780914],[-73.96205306053162,40.773745311181585],[-73.96160781383514,40.7743912365898],[-73.9630937576294,40.77498840732385]]]});
let polygon2 = dynamic({"type":"Polygon","coordinates":[[[-73.96213352680206,40.775045280447145],[-73.9631313085556,40.774578106920345],[-73.96207988262177,40.77416780398293],[-73.96213352680206,40.775045280447145]]]});
print intersection = geo_intersection_2polygons(polygon1, polygon2)

Output

intersection
{“type”: “Polygon”, “coordinates”: [[[-73.962105776437156,40.774591360999679],[-73.962642403166868,40.774807020251778],[-73.9631313085556,40.774578106920352],[-73.962079882621765,40.774167803982927],[-73.962105776437156,40.774591360999679]]]}

The following example calculates intersection between two polygons. In this case, the result is a point.

let polygon1 = dynamic({"type":"Polygon","coordinates":[[[2,45],[0,45],[1,44],[2,45]]]});
let polygon2 = dynamic({"type":"Polygon","coordinates":[[[3,44],[2,45],[2,43],[3,44]]]});
print intersection = geo_intersection_2polygons(polygon1, polygon2)

Output

intersection
{“type”: “Point”,“coordinates”: [2,45]}

The following two polygons intersection is a collection.

let polygon1 = dynamic({"type":"Polygon","coordinates":[[[2,45],[0,45],[1,44],[2,45]]]});
let polygon2 = dynamic({"type":"MultiPolygon","coordinates":[[[[3,44],[2,45],[2,43],[3,44]]],[[[1.192,45.265],[1.005,44.943],[1.356,44.937],[1.192,45.265]]]]});
print intersection = geo_intersection_2polygons(polygon1, polygon2)

Output

intersection
{“type”: “GeometryCollection”,“geometries”: [
{ “type”: “Point”, “coordinates”: [2, 45]},
{ “type”: “Polygon”, “coordinates”: [[[1.3227075526410679,45.003909145068739],[1.0404565374899824,45.004356403066552],[1.005,44.943],[1.356,44.937],[1.3227075526410679,45.003909145068739]]]}]}

The following two polygons don’t intersect.

let polygon1 = dynamic({"type":"Polygon","coordinates":[[[2,45],[0,45],[1,44],[2,45]]]});
let polygon2 = dynamic({"type":"Polygon","coordinates":[[[3,44],[3,45],[2,43],[3,44]]]});
print intersection = geo_intersection_2polygons(polygon1, polygon2)

Output

intersection
{“type”: “GeometryCollection”, “geometries”: []}

The following example finds all counties in USA that intersect with area of interest polygon.

let area_of_interest = dynamic({"type":"Polygon","coordinates":[[[-73.96213352680206,40.775045280447145],[-73.9631313085556,40.774578106920345],[-73.96207988262177,40.77416780398293],[-73.96213352680206,40.775045280447145]]]});
US_Counties
| project name = features.properties.NAME, county = features.geometry
| project name, intersection = geo_intersection_2polygons(county, area_of_interest)
| where array_length(intersection.geometries) != 0

Output

nameintersection
New York{“type”: “Polygon”,“coordinates”: [[[-73.96213352680206, 40.775045280447145], [-73.9631313085556, 40.774578106920345], [-73.96207988262177,40.77416780398293],[-73.96213352680206, 40.775045280447145]]]}

The following example will return a null result because one of the polygons is invalid.

let central_park_polygon = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
let invalid_polygon = dynamic({"type":"Polygon"});
print isnull(geo_intersection_2polygons(invalid_polygon, central_park_polygon))

Output

print_0
1

18 - geo_intersection_line_with_polygon()

Learn how to use the geo_intersection_line_with_polygon() function to calculate the intersection of a line string or a multiline string with a polygon or a multipolygon.

Calculates the intersection of a line or a multiline with a polygon or a multipolygon.

Syntax

geo_intersection_line_with_polygon(lineString,polygon)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.
polygondynamic✔️A Polygon or MultiPolygon in the GeoJSON format.

Returns

Intersection in GeoJSON Format and of a dynamic data type. If lineString or a multiLineString or a polygon or a multipolygon are invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [LinearRingShell, LinearRingHole_1, …, LinearRingHole_N]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N],…, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon contains its vertices.

Examples

The following example calculates intersection between line and polygon. In this case, the result is a line.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275],[-73.974552,40.779761]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.9712905883789,40.78580561168767],[-73.98004531860352,40.775276834803655],[-73.97000312805176,40.77852663535664],[-73.9712905883789,40.78580561168767]]]});
print intersection = geo_intersection_line_with_polygon(lineString, polygon)

Output

intersection
{“type”: “LineString”,“coordinates”: [[-73.975611956578192,40.78060906714618],[-73.974552,40.779761]]}

The following example calculates intersection between line and polygon. In this case, the result is a multiline.

let lineString = dynamic({"type":"LineString","coordinates":[[-110.522, 39.198],[-91.428, 40.880]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-90.263,36.738],[-102.041,45.274],[-109.335,36.527],[-90.263,36.738]],[[-100.393,41.705],[-103.139,38.925],[-97.558,39.113],[-100.393,41.705]]]});
print intersection = geo_intersection_line_with_polygon(lineString, polygon)

Output

intersection
{“type”: “MultiLineString”,“coordinates”: [[[ -106.89353655881905, 39.769226209776306],[ -101.74448553679453, 40.373506008712525]],[[-99.136499431328858, 40.589336512699994],[-95.284527737311791, 40.799060242246348]]]}

The following line and polygon don’t intersect.

let lineString = dynamic({"type":"LineString","coordinates":[[1, 1],[2, 2]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.9712905883789,40.78580561168767],[-73.98004531860352,40.775276834803655],[-73.97000312805176,40.77852663535664],[-73.9712905883789,40.78580561168767]]]});
print intersection = geo_intersection_line_with_polygon(lineString, polygon)

Output

intersection
{“type”: “GeometryCollection”,“geometries”: []}

The following example finds all roads in the NYC GeoJSON roads table that intersects with the area of interest literal polygon.

let area_of_interest = dynamic({"type":"Polygon","coordinates":[[[-73.95768642425537,40.80065354924362],[-73.9582872390747,40.80089719667298],[-73.95869493484497,40.80050736035672],[-73.9580512046814,40.80019873831593],[-73.95768642425537,40.80065354924362]]]});
NY_Manhattan_Roads
| project name = features.properties.Label, road = features.geometry
| project name, intersection = geo_intersection_line_with_polygon(road, area_of_interest)
| where array_length(intersection.geometries) != 0

Output

nameintersection
CentralParkW{“type”:“MultiLineString”,“coordinates”:[[[-73.958295846836933,40.800316027289647],[-73.9582724,40.8003415]],[[-73.958413422194482,40.80037239620097],[-73.9584093,40.8003797]]]}
FrederickDouglassCir{“type”:“LineString”,“coordinates”:[[-73.9579272943862,40.800751229494182],[-73.9579019,40.8007238],[-73.9578688,40.8006749],[-73.9578508,40.8006203],[-73.9578459,40.800570199999996],[-73.9578484,40.80053310000001],[-73.9578627,40.800486700000008],[-73.957913,40.800421100000008],[-73.9579668,40.8003923],[-73.9580189,40.80037260000001],[-73.9580543,40.8003616],[-73.9581237,40.8003395],[-73.9581778,40.8003365],[-73.9582724,40.8003415],[-73.958308,40.8003466],[-73.9583328,40.8003517],[-73.9583757,40.8003645],[-73.9584093,40.8003797],[-73.9584535,40.80041099999999],[-73.9584818,40.8004536],[-73.958507000000012,40.8004955],[-73.9585217,40.800562400000004],[-73.9585282,40.8006155],[-73.958416200000016,40.8007325],[-73.9583541,40.8007785],[-73.9582772,40.800811499999995],[-73.9582151,40.8008285],[-73.958145918999392,40.800839887820239]]}
W110thSt{“type”:“MultiLineString”,“coordinates”:[[[-73.957828446036331,40.800476476316327],[-73.9578627,40.800486700000008]],[[-73.9585282,40.8006155],[-73.958565492035873,40.800631133466972]],[[-73.958416200000016,40.8007325],[-73.958446850928084,40.800744577466617]]]}
WestDr{“type”:“LineString”,“coordinates”:[[-73.9580543,40.8003616],[-73.958009693938735,40.800250494588468]]}

The following example finds all counties in the USA that intersect with area of interest literal LineString.

let area_of_interest = dynamic({"type":"LineString","coordinates":[[-73.97159099578857,40.794513338780895],[-73.96738529205322,40.792758888618756],[-73.96978855133057,40.789769718601505]]});
US_Counties
| project name = features.properties.NAME, county = features.geometry
| project name, intersection = geo_intersection_line_with_polygon(area_of_interest, county)
| where array_length(intersection.geometries) != 0

Output

nameintersection
New York{“type”: “LineString”,“coordinates”: [[-73.971590995788574, 40.794513338780895], [-73.967385292053223, 40.792758888618756],[-73.969788551330566, 40.789769718601512]]}

The following example will return a null result because the LineString is invalid.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.95768642425537,40.80065354924362],[-73.9582872390747,40.80089719667298],[-73.95869493484497,40.80050736035672],[-73.9580512046814,40.80019873831593],[-73.95768642425537,40.80065354924362]]]});
print is_invalid = isnull(geo_intersection_2lines(lineString, polygon))

Output

is_invalid
1

The following example will return a null result because the polygon is invalid.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.97159099578857,40.794513338780895],[-73.96738529205322,40.792758888618756],[-73.96978855133057,40.789769718601505]]});
let polygon = dynamic({"type":"Polygon","coordinates":[]});
print is_invalid = isnull(geo_intersection_2lines(lineString, polygon))

Output

is_invalid
1

19 - geo_intersects_2lines()

Learn how to use the geo_intersects_2lines() function to check if two line strings or multiline strings intersect.

Calculates whether two lines or multilines intersect.

Syntax

geo_intersects_2lines(lineString1,lineString2)

Parameters

NameTypeRequiredDescription
lineString1dynamic✔️A line or multiline in the GeoJSON format.
lineString2dynamic✔️A line or multiline in the GeoJSON format.

Returns

Indicates whether two lines or multilines intersect. If lineString or a multiLineString are invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following example checks whether some two literal lines intersects.

let lineString1 = dynamic({"type":"LineString","coordinates":[[-73.978929,40.785155],[-73.980903,40.782621]]});
let lineString2 = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275],[-73.974552,40.779761]]});
print intersects = geo_intersects_2lines(lineString1, lineString2)

Output

intersects
True

The following example finds all roads in the NYC GeoJSON roads table that intersects with some lines of interest.

let my_road = dynamic({"type":"LineString","coordinates":[[-73.97892951965332,40.78515573551921],[-73.98090362548828,40.78262115769851]]});
NY_Manhattan_Roads
| project name = features.properties.Label, road = features.geometry
| where geo_intersects_2lines(road, my_road)
| project name

Output

name
Broadway
W 78th St
W 79th St
W 80th St
W 81st St

The following example will return a null result because one of lines is invalid.

let lineString1 = dynamic({"type":"LineString","coordinates":[[-73.978929,40.785155],[-73.980903,40.782621]]});
let lineString2 = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275]]});
print isnull(geo_intersects_2lines(lineString1, lineString2))

Output

print_0
True

20 - geo_intersects_2polygons()

Learn how to use the geo_intersects_2polygons() function to calculate whether two polygons or multipolygons intersect

Calculates whether two polygons or multipolygons intersect.

Syntax

geo_intersects_2polygons(polygon1,polygon1)

Parameters

NameTypeRequiredDescription
polygon1dynamic✔️Polygon or multipolygon in the GeoJSON format.
polygon2dynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

Indicates whether two polygons or multipolygons intersect. If the Polygon or the MultiPolygon are invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [LinearRingShell, LinearRingHole_1, …, LinearRingHole_N]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1], …, [lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1], …,[lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon contains its vertices.

Examples

The following example checks whether some two literal polygons intersects.

let polygon1 = dynamic({"type":"Polygon","coordinates":[[[-73.9630937576294,40.77498840732385],[-73.963565826416,40.774383111780914],[-73.96205306053162,40.773745311181585],[-73.96160781383514,40.7743912365898],[-73.9630937576294,40.77498840732385]]]});
let polygon2 = dynamic({"type":"Polygon","coordinates":[[[-73.96213352680206,40.775045280447145],[-73.9631313085556,40.774578106920345],[-73.96207988262177,40.77416780398293],[-73.96213352680206,40.775045280447145]]]});
print geo_intersects_2polygons(polygon1, polygon2)

Output

print_0
True

The following example finds all counties in the USA that intersect with area of interest literal polygon.

let area_of_interest = dynamic({"type":"Polygon","coordinates":[[[-73.96213352680206,40.775045280447145],[-73.9631313085556,40.774578106920345],[-73.96207988262177,40.77416780398293],[-73.96213352680206,40.775045280447145]]]});
US_Counties
| project name = features.properties.NAME, county = features.geometry
| where geo_intersects_2polygons(county, area_of_interest)
| project name

Output

name
New York

The following example will return a null result because one of the polygons is invalid.

let central_park_polygon = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
let invalid_polygon = dynamic({"type":"Polygon"});
print isnull(geo_intersects_2polygons(invalid_polygon, central_park_polygon))

Output

print_0
True

21 - geo_intersects_line_with_polygon()

Learn how to use the geo_intersects_line_with_polygon() function to check if a line string or a multiline string intersect with a polygon or a multipolygon.

Calculates whether a line or multiline intersect with a polygon or a multipolygon.

Syntax

geo_intersects_line_with_polygon(lineString,polygon)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.
polygondynamic✔️A Polygon or MultiPolygon in the GeoJSON format.

Returns

Indicates whether the line or multiline intersects with polygon or a multipolygon. If lineString or a multiLineString or a polygon or a multipolygon are invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1], …,[lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1], …,[lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon doesn’t necessarily contain its vertices.

Examples

The following example checks whether a literal LineString intersects with a Polygon.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275],[-73.974552,40.779761]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.9712905883789,40.78580561168767],[-73.98004531860352,40.775276834803655],[-73.97000312805176,40.77852663535664],[-73.9712905883789,40.78580561168767]]]});
print intersects = geo_intersects_line_with_polygon(lineString, polygon)

Output

intersects
True

The following example finds all roads in the NYC GeoJSON roads table that intersect with area of interest literal polygon.

let area_of_interest = dynamic({"type":"Polygon","coordinates":[[[-73.95768642425537,40.80065354924362],[-73.9582872390747,40.80089719667298],[-73.95869493484497,40.80050736035672],[-73.9580512046814,40.80019873831593],[-73.95768642425537,40.80065354924362]]]});
NY_Manhattan_Roads
| project name = features.properties.Label, road = features.geometry
| where geo_intersects_line_with_polygon(road, area_of_interest)
| project name

Output

name
Central Park W
Frederick Douglass Cir
W 110th St
West Dr

The following example finds all counties in the USA that intersect with area of interest literal LineString.

let area_of_interest = dynamic({"type":"LineString","coordinates":[[-73.97159099578857,40.794513338780895],[-73.96738529205322,40.792758888618756],[-73.96978855133057,40.789769718601505]]});
US_Counties
| project name = features.properties.NAME, county = features.geometry
| where geo_intersects_line_with_polygon(area_of_interest, county)
| project name

Output

name
New York

The following example will return a null result because the LineString is invalid.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.985195,40.788275]]});
let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.95768642425537,40.80065354924362],[-73.9582872390747,40.80089719667298],[-73.95869493484497,40.80050736035672],[-73.9580512046814,40.80019873831593],[-73.95768642425537,40.80065354924362]]]});
print isnull(geo_intersects_2lines(lineString, polygon))

Output

print_0
True

The following example will return a null result because the polygon is invalid.

let lineString = dynamic({"type":"LineString","coordinates":[[-73.97159099578857,40.794513338780895],[-73.96738529205322,40.792758888618756],[-73.96978855133057,40.789769718601505]]});
let polygon = dynamic({"type":"Polygon","coordinates":[]});
print isnull(geo_intersects_2lines(lineString, polygon))

Output

print_0
True

22 - geo_line_buffer()

Learn how to use the geo_line_buffer() function to calculate line buffer

Calculates polygon or multipolygon that contains all points within the given radius of the input line or multiline on Earth.

Syntax

geo_line_buffer(lineString, radius, tolerance)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.
radiusreal✔️Buffer radius in meters. Valid value must be positive.
tolerancerealDefines the tolerance in meters that determines how much a polygon can deviate from the ideal radius. If unspecified, the default value 10 is used. Tolerance should be no lower than 0.0001% of the radius. Specifying tolerance bigger than radius lowers the tolerance to biggest possible value below the radius.

Returns

Polygon or MultiPolygon around the input LineString or MultiLineString. If the coordinates or radius or tolerance is invalid, the query produces a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following query calculates polygon around line, with radius of 4 meters and 0.1 meter tolerance

let line = dynamic({"type":"LineString","coordinates":[[-80.66634997047466,24.894526340592122],[-80.67373241820246,24.890808090321286]]});
print buffer = geo_line_buffer(line, 4, 0.1)
buffer
{“type”: “Polygon”, “coordinates”: [ … ]}

The following query calculates buffer around each line and unifies result

datatable(line:dynamic)
[
    dynamic({"type":"LineString","coordinates":[[14.429214068940496,50.10043066548272],[14.431184174126173,50.10046525983731]]}),
    dynamic({"type":"LineString","coordinates":[[14.43030222687753,50.100780677801936],[14.4303847111523,50.10020274910934]]})
]
| project buffer = geo_line_buffer(line, 2, 0.1)
| summarize polygons = make_list(buffer)
| project result = geo_union_polygons_array(polygons)
result
{“type”: “Polygon”,“coordinates”: [ … ]}

The following example will return true, due to invalid line.

print buffer = isnull(geo_line_buffer(dynamic({"type":"LineString"}), 5))
buffer
True

The following example will return true, due to invalid radius.

print buffer = isnull(geo_line_buffer(dynamic({"type":"LineString","coordinates":[[0,0],[1,1]]}), 0))
buffer
True

23 - geo_line_centroid()

Learn how to use the geo_line_centroid() function to calculate the centroid of a line or a multiline on Earth.

Calculates the centroid of a line or a multiline on Earth.

Syntax

geo_line_centroid(lineString)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.

Returns

The centroid coordinate values in GeoJSON Format and of a dynamic data type. If the line or the multiline is invalid, the query produces a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices is chosen.

Examples

The following example calculates line centroid.

let line = dynamic({"type":"LineString","coordinates":[[-73.95796, 40.80042], [-73.97317, 40.764486]]});
print centroid = geo_line_centroid(line);

Output

centroid
{“type”: “Point”, “coordinates”: [-73.965567057230942, 40.782453249627416]}

The following example calculates line centroid longitude.

let line = dynamic({"type":"LineString","coordinates":[[-73.95807266235352,40.800426144169315],[-73.94966125488281,40.79691751000055],[-73.97317886352539,40.764486356930334],[-73.98210525512695,40.76786669510221],[-73.96004676818848,40.7980870753293]]});
print centroid = geo_line_centroid(line)
| project lng = centroid.coordinates[0]

Output

lng
-73.9660675626837

The following example visualizes line centroid on a map.

let line = dynamic({"type":"MultiLineString","coordinates":[[[-73.95798683166502,40.800556090021466],[-73.98193359375,40.76819171855746]],[[-73.94940376281738,40.79691751000055],[-73.97317886352539,40.76435634049001]]]});
print centroid = geo_line_centroid(line)
| render scatterchart with (kind = map)

Screenshot of the New York City Central Park line centroid.

The following example returns true because of the invalid line.

print is_bad_line = isnull(geo_line_centroid(dynamic({"type":"LineString","coordinates":[[1, 1]]})))

Output

is_bad_line
true

24 - geo_line_densify()

Learn how to use the geo_line_densify() function to convert planar lines or multiline edges to geodesics.

Converts planar lines or multiline edges to geodesics by adding intermediate points.

Syntax

geo_line_densify(lineString, tolerance, [ preserve_crossing ])

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.
toleranceint, long, or realDefines maximum distance in meters between the original planar edge and the converted geodesic edge chain. Supported values are in the range [0.1, 10000]. If unspecified, the default value 10 is used.
preserve_crossingboolIf true, preserves edge crossing over antimeridian. If unspecified, the default value false is used.

Returns

Densified line in the GeoJSON format and of a dynamic data type. If either the line or tolerance is invalid, the query will produce a null result.

LineString definition

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • The coordinates [longitude, latitude] must be valid. The longitude must be a real number in the range [-180, +180] and the latitude must be a real number in the range [-90, +90].
  • The edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Constraints

  • The maximum number of points in the densified line is limited to 10485760.
  • Storing lines in dynamic format has size limits.

Motivation

  • GeoJSON format defines an edge between two points as a straight cartesian line while geo_line_densify() uses geodesic.
  • The decision to use geodesic or planar edges might depend on the dataset and is especially relevant in long edges.

Examples

The following example densifies a road in Manhattan island. The edge is short and the distance between the planar edge and its geodesic counterpart is less than the distance specified by tolerance. As such, the result remains unchanged.

print densified_line = tostring(geo_line_densify(dynamic({"type":"LineString","coordinates":[[-73.949247, 40.796860],[-73.973017, 40.764323]]})))

Output

densified_line
{“type”:“LineString”,“coordinates”:[[-73.949247, 40.796860], [-73.973017, 40.764323]]}

The following example densifies an edge of ~130-km length

print densified_line = tostring(geo_line_densify(dynamic({"type":"LineString","coordinates":[[50, 50], [51, 51]]})))

Output

densified_line
{“type”:“LineString”,“coordinates”:[[50,50],[50.125,50.125],[50.25,50.25],[50.375,50.375],[50.5,50.5],[50.625,50.625],[50.75,50.75],[50.875,50.875],[51,51]]}

The following example returns a null result because of the invalid coordinate input.

print densified_line = geo_line_densify(dynamic({"type":"LineString","coordinates":[[300,1],[1,1]]}))

Output

densified_line

The following example returns a null result because of the invalid tolerance input.

print densified_line = geo_line_densify(dynamic({"type":"LineString","coordinates":[[1,1],[2,2]]}), 0)

Output

densified_line

25 - geo_line_length()

Learn how to use the geo_line_length() function to calculate the total length of a line string or a multiline string on Earth.

Calculates the total length of a line or a multiline on Earth.

Syntax

geo_line_length(lineString)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.

Returns

The total length of a line or a multiline, in meters, on Earth. If the line or multiline is invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following example calculates the total line length, in meters.

let line = dynamic({"type":"LineString","coordinates":[[-73.95807266235352,40.800426144169315],[-73.94966125488281,40.79691751000055],[-73.97317886352539,40.764486356930334]]});
print length = geo_line_length(line)

Output

length
4922.48016992081

The following example calculates total multiline length, in meters.

let line = dynamic({"type":"MultiLineString","coordinates":[[[-73.95798683166502,40.800556090021466],[-73.98193359375,40.76819171855746]],[[-73.94940376281738,40.79691751000055],[-73.97317886352539,40.76435634049001]]]});
print length = geo_line_length(line)

Output

length
8262.24339753741

The following example returns True because of the invalid line.

print is_bad_line = isnull(geo_line_length(dynamic({"type":"LineString","coordinates":[[1, 1]]})))

Output

is_bad_line
True

26 - geo_line_simplify()

Learn how to use the geo_line_simplify() function to simplify a line string or a multiline string.

Simplifies a line or a multiline by replacing nearly straight chains of short edges with a single long edge on Earth.

Syntax

geo_line_simplify(lineString, tolerance)

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️A LineString or MultiLineString in the GeoJSON format.
toleranceint, long, or realDefines minimum distance in meters between any two vertices. Supported values are in the range [0, ~7,800,000 meters]. If unspecified, the default value 10 is used.

Returns

Simplified line or a multiline in the GeoJSON format and of a dynamic data type, with no two vertices with distance less than tolerance. If either the line or tolerance is invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following example simplifies the line by removing vertices that are within a 10-meter distance from each other.

let line = dynamic({"type":"LineString","coordinates":[[-73.97033169865608,40.789063020152824],[-73.97039607167244,40.78897975920816],[-73.9704617857933,40.78888837512432],[-73.97052884101868,40.7887949601531],[-73.9706052839756,40.788698498903564],[-73.97065222263336,40.78862640672032],[-73.97072866559029,40.78852791445617],[-73.97079303860664,40.788434498977836]]});
print simplified = geo_line_simplify(line, 10)

Output

simplified
{“type”: “LineString”, “coordinates”: [[-73.97033169865608, 40.789063020152824], [-73.97079303860664, 40.788434498977836]]}

The following example simplifies lines and combines results into GeoJSON geometry collection.

NY_Manhattan_Roads
| project road = features.geometry
| project road_simplified = geo_line_simplify(road, 100)
| summarize roads_lst = make_list(road_simplified)
| project geojson = bag_pack("type", "Feature","geometry", bag_pack("type", "GeometryCollection", "geometries", roads_lst), "properties", bag_pack("name", "roads"))

Output

geojson
{“type”: “Feature”, “geometry”: {“type”: “GeometryCollection”, “geometries”: [ … ]}, “properties”: {“name”: “roads”}}

The following example simplifies lines and unifies result

NY_Manhattan_Roads
| project road = features.geometry
| project road_simplified = geo_line_simplify(road, 100)
| summarize roads_lst = make_list(road_simplified)
| project roads = geo_union_lines_array(roads_lst)

Output

roads
{“type”: “MultiLineString”, “coordinates”: [ … ]}

The following example returns True because of the invalid line.

print is_invalid_line = isnull(geo_line_simplify(dynamic({"type":"LineString","coordinates":[[1, 1]]})))

Output

is_invalid_line
True

The following example returns True because of the invalid tolerance.

print is_invalid_line = isnull(geo_line_simplify(dynamic({"type":"LineString","coordinates":[[1, 1],[2,2]]}), -1))

Output

is_invalid_line
True

The following example returns True because high tolerance causes small line to disappear.

print is_invalid_line = isnull(geo_line_simplify(dynamic({"type":"LineString","coordinates":[[1.1, 1.1],[1.2,1.2]]}), 100000))

Output

is_invalid_line
True

27 - geo_line_to_s2cells()

Learn how to use the geo_line_to_s2cells() function to calculate S2 cell tokens that cover a line or a multiline on Earth.

Calculates S2 cell tokens that cover a line or multiline on Earth. This function is a useful geospatial join tool.

Read more about S2 cell hierarchy.

Syntax

geo_line_to_s2cells(lineString [, level[ , radius]])

Parameters

NameTypeRequiredDescription
lineStringdynamic✔️Line or multiline in the GeoJSON format.
levelintDefines the requested cell level. Supported values are in the range [0, 30]. If unspecified, the default value 11 is used.
radiusrealBuffer radius in meters. If unspecified, the default value 0 is used.

Returns

Array of S2 cell token strings that cover a line or a multiline. If the radius is set to a positive value, then the covering will be of both input shape and all points within the radius of the input geometry.

If any of the following: line, level, radius is invalid, or the cell count exceeds the limit, the query will produce a null result.

Choosing the S2 cell level

  • Ideally we would want to cover every line with one or just a few unique cells such that no two lines share the same cell.
  • In practice, try covering with just a few cells, no more than a dozen. Covering with more than 10,000 cells might not yield good performance.
  • Query run time and memory consumption might differ greatly because of different S2 cell level values.

Performance improvement suggestions

  • If possible, reduce lines count due to nature of the data or business needs. Filter out unnecessary lines before join, scope to the area of interest or unify lines.
  • In case of very big lines, reduce their size using geo_line_simplify().
  • Changing S2 cell level may improve performance and memory consumption.
  • Changing join kind and hint may improve performance and memory consumption.
  • In case positive radius is set, reverting to radius 0 on buffered shape using geo_line_buffer() may improve performance.

Examples

The following query finds all tube stations within 500 meters of streets and aggregates tubes count by street name.

let radius = 500;
let tube_stations = datatable(tube_station_name:string, lng:real, lat: real)
[
    "St. James' Park",        -0.13451078568013486, 51.49919145858172,
     "London Bridge station", -0.08492752160134387, 51.504876316440914,
     // more points
];
let streets = datatable(street_name:string, line:dynamic)
[
    "Buckingham Palace", dynamic({"type":"LineString","coordinates":[[-0.1399656708283601,51.50190802248855],[-0.14088438832752104,51.50012082761452]]}),
    "London Bridge",    dynamic({"type":"LineString","coordinates":[[-0.087152,51.509596],[-0.088340,51.506110]]}),
    // more lines
];
let join_level = 14;
let lines = materialize(streets | extend id = new_guid());
let res = 
    lines
    | project id, covering = geo_line_to_s2cells(line, join_level, radius)
    | mv-expand covering to typeof(string)
    | join kind=inner hint.strategy=broadcast
    (
        tube_stations
        | extend covering = geo_point_to_s2cell(lng, lat, join_level)
    ) on covering;
res | lookup lines on id
| where geo_distance_point_to_line(lng, lat, line) <= radius
| summarize count = count() by name = street_name
namecount
Buckingham Palace1
London Bridge1

In case of invalid line, a null result will be returned.

let line = dynamic({"type":"LineString","coordinates":[[[0,0],[0,0]]]});
print isnull(geo_line_to_s2cells(line))
print_0
True

28 - geo_point_buffer()

Learn how to use the geo_point_buffer() function to calculate point buffer

Calculates polygon that contains all points within the given radius of the point on Earth.

Syntax

geo_point_buffer(longitude, latitude, radius, tolerance)

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate latitude value in degrees. Valid value is a real number and in the range [-90, +90].
radiusreal✔️Buffer radius in meters. Valid value must be positive.
tolerancerealDefines the tolerance in meters that determines how much a polygon can deviate from the ideal radius. If unspecified, the default value 10 is used. Tolerance should be no lower than 0.0001% of the radius. Specifying tolerance bigger than radius lowers the tolerance to biggest possible value below the radius.

Returns

Polygon around the input point. If the coordinates or radius or tolerance is invalid, the query produces a null result.

Examples

The following query calculates polygon around [-115.1745008278, 36.1497251277] coordinates, with 20km radius.

print buffer = geo_point_buffer(-115.1745008278, 36.1497251277, 20000)
buffer
{“type”: “Polygon”,“coordinates”: [ … ]}

The following query calculates buffer around each point and unifies result

datatable(longitude:real, latitude:real, radius:real)
[
    real(-80.3212217992616), 25.268683367546604, 5000,
    real(-80.81717403605833), 24.82658441221962, 3000
]
| project buffer = geo_point_buffer(longitude, latitude, radius)
| summarize polygons = make_list(buffer)
| project result = geo_union_polygons_array(polygons)
result
{“type”: “MultiPolygon”,“coordinates”: [ … ]}

The following example returns true, due to invalid point.

print result = isnull(geo_point_buffer(200, 1,0.1))
result
True

The following example returns true, due to invalid radius.

print result = isnull(geo_point_buffer(10, 10, -1))
result
True

29 - geo_point_in_circle()

Learn how to use the geo_point_in_circle() function to check if the geospatial coordinates are inside a circle on Earth.

Calculates whether the geospatial coordinates are inside a circle on Earth.

Syntax

geo_point_in_circle(p_longitude, p_latitude, pc_longitude, pc_latitude, c_radius)

Parameters

NameTypeRequiredDescription
p_longitudereal✔️Geospatial coordinate longitude value in degrees. Valid value is a real number and in the range [-180, +180].
p_latitudereal✔️Geospatial coordinate latitude value in degrees. Valid value is a real number and in the range [-90, +90].
pc_longitudereal✔️Circle center geospatial coordinate longitude value in degrees. Valid value is a real number and in the range [-180, +180].
pc_latitudereal✔️circle center geospatial coordinate latitude value in degrees. Valid value is a real number and in the range [-90, +90].
c_radiusreal✔️Circle radius in meters. Valid value must be positive.

Returns

Indicates whether the geospatial coordinates are inside a circle. If the coordinates or circle is invalid, the query produces a null result.

Examples

The following example finds all the places in the area defined by the following circle: Radius of 18 km, center at [-122.317404, 47.609119] coordinates.

Screenshot of a map with places within 18 km of Seattle.

datatable(longitude:real, latitude:real, place:string)
[
    real(-122.317404), 47.609119, 'Seattle',                   // In circle 
    real(-123.497688), 47.458098, 'Olympic National Forest',   // In exterior of circle  
    real(-122.201741), 47.677084, 'Kirkland',                  // In circle
    real(-122.443663), 47.247092, 'Tacoma',                    // In exterior of circle
    real(-122.121975), 47.671345, 'Redmond',                   // In circle
]
| where geo_point_in_circle(longitude, latitude, -122.317404, 47.609119, 18000)
| project place

Output

place
Seattle
Kirkland
Redmond

The following example finds storm events in Orlando. The events are filtered by 100 km within Orlando coordinates, and aggregated by event type and hash.

StormEvents
| project BeginLon, BeginLat, EventType
| where geo_point_in_circle(BeginLon, BeginLat, real(-81.3891), 28.5346, 1000 * 100)
| summarize count() by EventType, hash = geo_point_to_s2cell(BeginLon, BeginLat)
| project geo_s2cell_to_central_point(hash), EventType, count_
| render piechart with (kind=map) // map pie rendering available in Kusto Explorer desktop

Output

Screenshot of storm events in Orlando rendered with pie chart points on a map.

The following example shows New York city taxi pickups within 10 meters of a particular location. Relevant pickups are aggregated by hash.

nyc_taxi
| project pickup_longitude, pickup_latitude
| where geo_point_in_circle( pickup_longitude, pickup_latitude, real(-73.9928), 40.7429, 10)
| summarize by hash = geo_point_to_s2cell(pickup_longitude, pickup_latitude, 22)
| project geo_s2cell_to_central_point(hash)
| render scatterchart with (kind = map)

Output

Screenshot of the rendered map showing nearby New York city taxi pickups, as defined in the query.

The following example returns true.

print in_circle = geo_point_in_circle(-122.143564, 47.535677, -122.100896, 47.527351, 3500)

Output

in_circle
true

The following example returns false.

print in_circle = geo_point_in_circle(-122.137575, 47.630683, -122.100896, 47.527351, 3500)

Output

in_circle
false

The following example returns a null result because of the invalid coordinate input.

print in_circle = geo_point_in_circle(200, 1, 1, 1, 1)

Output

in_circle

The following example returns a null result because of the invalid circle radius input.

print in_circle = geo_point_in_circle(1, 1, 1, 1, -1)

Output

in_circle

30 - geo_point_in_polygon()

Learn how to use the geo_point_in_polygon() function to check if the geospatial coordinates are inside a polygon or a multipolygon on Earth.

Calculates whether the geospatial coordinates are inside a polygon or a multipolygon on Earth.

Syntax

geo_point_in_polygon(longitude, latitude, polygon)

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate, longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate, latitude value in degrees. Valid value is a real number and in the range [-90, +90].
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

Indicates whether the geospatial coordinates are inside a polygon. If the coordinates or polygon is invalid, the query produces a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions, is chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices is chosen.
  • LinearRings must not cross and must not share edges. LinearRings might share vertices.
  • Polygon doesn’t necessarily contain its vertices. Point containment in polygon is defined so that if the Earth is subdivided into polygons, every point is contained by exactly one polygon.

Examples

The following example finds locations which fall within Manhattan island, excluding the area of Central Park.

Screenshot of a map of the Manhattan area, with markers for a landmark, a museum, and an airport. The island appears dimmed except for Central Park.

datatable(longitude:real, latitude:real, description:string)
[
    real(-73.985654), 40.748487, 'Empire State Building',           // In Polygon 
    real(-73.963249), 40.779525, 'The Metropolitan Museum of Art',  // In exterior of polygon
    real(-73.874367), 40.777356, 'LaGuardia Airport',               // In exterior of polygon
]
| where geo_point_in_polygon(longitude, latitude, dynamic({"type":"Polygon","coordinates":[[[-73.92597198486328,40.87821814104651],[-73.94691467285156,40.85069618625578],[-73.94691467285156,40.841865966890786],[-74.01008605957031,40.7519385984599],[-74.01866912841797,40.704586878965245],[-74.01214599609375,40.699901911003046],[-73.99772644042969,40.70875101828792],[-73.97747039794922,40.71083299030839],[-73.97026062011719,40.7290474687069],[-73.97506713867186,40.734510840309376],[-73.970947265625,40.74543623770158],[-73.94210815429688,40.77586181063573],[-73.9434814453125,40.78080140115127],[-73.92974853515625,40.79691751000055],[-73.93077850341797,40.804454347291006],[-73.93489837646484,40.80965166748853],[-73.93524169921875,40.837190668541105],[-73.92288208007812,40.85770758108904],[-73.9101791381836,40.871728144624974],[-73.92597198486328,40.87821814104651]],[[-73.95824432373047,40.80071852197889],[-73.98206233978271,40.76815921628347],[-73.97309303283691,40.76422632379533],[-73.94914627075195,40.796949998204596],[-73.95824432373047,40.80071852197889]]]}))

Output

longitudelatitudedescription
-73.98565440.748487Empire State Building

The following example searches for coordinates in a multipolygon.

Screenshot of a map of the Manhattan area, with markers for the Upper West Side, Greenwich Village, and an airport. Three neighborhoods appear dimmed.

let multipolygon = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.991460000000131,40.731738000000206],[-73.992854491775518,40.730082566051351],[-73.996772,40.725432000000154],[-73.997634685522883,40.725786309886963],[-74.002855946639244,40.728346630056791],[-74.001413,40.731065000000207],[-73.996796995070824,40.73736378205173],[-73.991724524037934,40.735245208931886],[-73.990703782359589,40.734781896080477],[-73.991460000000131,40.731738000000206]]],[[[-73.958357552055688,40.800369095633819],[-73.98143901556422,40.768762584141953],[-73.981548752788598,40.7685590292784],[-73.981565335901905,40.768307084720796],[-73.981754418060945,40.768399727738668],[-73.982038573548124,40.768387823012056],[-73.982268248204349,40.768298621883247],[-73.982384797518051,40.768097213086911],[-73.982320919746599,40.767894461792181],[-73.982155532845766,40.767756204474757],[-73.98238873834039,40.767411004834273],[-73.993650353659021,40.772145571634361],[-73.99415893763998,40.772493009137818],[-73.993831082030937,40.772931787850908],[-73.993891252437052,40.772955194876722],[-73.993962585514595,40.772944653908901],[-73.99401262480508,40.772882846631894],[-73.994122058082397,40.77292405902601],[-73.994136652588594,40.772901870174394],[-73.994301342391154,40.772970028663913],[-73.994281535134448,40.77299380206933],[-73.994376552751078,40.77303955110149],[-73.994294029824005,40.773156243992048],[-73.995023275860802,40.773481196576356],[-73.99508939189289,40.773388475039134],[-73.995013963716758,40.773358035426909],[-73.995050284699261,40.773297153189958],[-73.996240651898916,40.773789791397689],[-73.996195837470992,40.773852356184044],[-73.996098807369748,40.773951805299085],[-73.996179459973888,40.773986954351571],[-73.996095245226442,40.774086186437756],[-73.995572265161172,40.773870731394297],[-73.994017424135961,40.77321375261053],[-73.993935876811335,40.773179512586211],[-73.993861942928888,40.773269531698837],[-73.993822393527211,40.773381758622882],[-73.993767019318497,40.773483981224835],[-73.993698463744295,40.773562141052594],[-73.993358326468751,40.773926888327956],[-73.992622663865575,40.774974056037109],[-73.992577842766124,40.774956016359418],[-73.992527743951555,40.775002110439829],[-73.992469745815342,40.775024159551755],[-73.992403837191887,40.775018140390664],[-73.99226708903538,40.775116033858794],[-73.99217809026365,40.775279293897171],[-73.992059084937338,40.775497598192516],[-73.992125372394938,40.775509075053385],[-73.992226867797001,40.775482211026116],[-73.992329346608813,40.775468900958522],[-73.992361756801131,40.775501899766638],[-73.992386042960277,40.775557180424634],[-73.992087684712729,40.775983970821372],[-73.990927174149746,40.777566878763238],[-73.99039616003671,40.777585065679204],[-73.989461267506471,40.778875124584417],[-73.989175778438053,40.779287524015778],[-73.988868617400072,40.779692922911607],[-73.988871874499793,40.779713738253008],[-73.989219022880576,40.779697895209402],[-73.98927785904425,40.779723439271038],[-73.989409054180143,40.779737706471963],[-73.989498614927044,40.779725044389757],[-73.989596493388234,40.779698146683387],[-73.989679812902509,40.779677568658038],[-73.989752702937935,40.779671244211556],[-73.989842247806507,40.779680752670664],[-73.990040102120489,40.779707677698219],[-73.990137977524839,40.779699769704784],[-73.99033584033225,40.779661794394983],[-73.990430598697046,40.779664973055503],[-73.990622199396725,40.779676064914298],[-73.990745069505479,40.779671328184051],[-73.990872114282197,40.779646007643876],[-73.990961672224358,40.779639683751753],[-73.991057472829539,40.779652352625774],[-73.991157429497036,40.779669775606465],[-73.991242817404469,40.779671367084504],[-73.991255318289745,40.779650782516491],[-73.991294887120119,40.779630209208889],[-73.991321967649895,40.779631796041372],[-73.991359455569423,40.779585883337383],[-73.991551059227476,40.779574821437407],[-73.99141982585985,40.779755280287233],[-73.988886144117032,40.779878898532999],[-73.988939656706265,40.779956178440393],[-73.988926103530844,40.780059292013632],[-73.988911680264692,40.780096037146606],[-73.988919261468567,40.780226094343945],[-73.988381050202634,40.780981074045783],[-73.988232413846987,40.781233144215555],[-73.988210420831663,40.781225482542055],[-73.988140000000143,40.781409000000224],[-73.988041288067166,40.781585961353777],[-73.98810029382463,40.781602878305286],[-73.988076449145055,40.781650935001608],[-73.988018059972219,40.781634188810422],[-73.987960792842145,40.781770987031535],[-73.985465811970457,40.785360700575431],[-73.986172704965611,40.786068452258647],[-73.986455862401996,40.785919219081421],[-73.987072345615601,40.785189638820121],[-73.98711901394276,40.785210319004058],[-73.986497781023601,40.785951202887254],[-73.986164628806279,40.786121882448327],[-73.986128422486075,40.786239001331111],[-73.986071135219746,40.786240706026611],[-73.986027274789123,40.786228964236727],[-73.986097637849426,40.78605822569795],[-73.985429321269592,40.785413942184597],[-73.985081137732209,40.785921935110366],[-73.985198833254501,40.785966552197777],[-73.985170502389906,40.78601333415817],[-73.985216218673656,40.786030501816427],[-73.98525509797993,40.785976205511588],[-73.98524273937646,40.785972572653328],[-73.98524962933017,40.785963139855845],[-73.985281779186749,40.785978620950075],[-73.985240032884533,40.786035858136792],[-73.985683885242182,40.786222123919686],[-73.985717529004575,40.786175994668795],[-73.985765660297687,40.786196274858618],[-73.985682871922691,40.786309786213067],[-73.985636270930442,40.786290150649279],[-73.985670722564691,40.786242911993817],[-73.98520511880038,40.786047669212785],[-73.985211035607492,40.786039554883686],[-73.985162639946992,40.786020999769754],[-73.985131636312062,40.786060297019972],[-73.985016964065125,40.78601423719563],[-73.984655078830457,40.786534741807841],[-73.985743787901043,40.786570082854738],[-73.98589227228328,40.786426529019593],[-73.985942854994988,40.786452847880334],[-73.985949561556794,40.78648711396653],[-73.985812373526713,40.786616865357047],[-73.985135209703174,40.78658761889551],[-73.984619428584324,40.786586016349787],[-73.981952458164173,40.790393724337193],[-73.972823037363767,40.803428052816756],[-73.971036786332192,40.805918478839672],[-73.966701,40.804169000000186],[-73.959647,40.801156000000113],[-73.958508540159471,40.800682279767472],[-73.95853274080838,40.800491362464697],[-73.958357552055688,40.800369095633819]]],[[[-73.943592454622546,40.782747908206574],[-73.943648235390199,40.782656161333449],[-73.943870759887162,40.781273026571704],[-73.94345932494096,40.780048275653243],[-73.943213862652243,40.779317588660199],[-73.943004239504688,40.779639495474292],[-73.942716005450905,40.779544169476175],[-73.942712374762181,40.779214856940001],[-73.942535563208608,40.779090956062532],[-73.942893408188027,40.778614093246276],[-73.942438481745029,40.777315235766039],[-73.942244919522594,40.777104088947254],[-73.942074188038887,40.776917846977142],[-73.942002667222781,40.776185317382648],[-73.942620205199006,40.775180871576474],[-73.94285645694552,40.774796600349191],[-73.94293043781397,40.774676268036011],[-73.945870899588215,40.771692257932997],[-73.946618690150586,40.77093339256956],[-73.948664164778933,40.768857624399587],[-73.950069793030679,40.767025088383498],[-73.954418260786071,40.762184104951245],[-73.95650786241211,40.760285256574043],[-73.958787773424007,40.758213471309809],[-73.973015157270069,40.764278692864671],[-73.955760332998182,40.787906554459667],[-73.944023,40.782960000000301],[-73.943592454622546,40.782747908206574]]]]});
let coordinates = 
    datatable(longitude:real, latitude:real, description:string)
    [
        real(-73.9741), 40.7914, 'Upper West Side',    // In MultiPolygon
        real(-73.9950), 40.7340, 'Greenwich Village',  // In MultiPolygon
        real(-73.8743), 40.7773, 'LaGuardia Airport',  // In exterior of MultiPolygon
    ];
coordinates
| where geo_point_in_polygon(longitude, latitude, multipolygon)

Output

longitudelatitudedescription
-73.974140.7914Upper West Side
-73.99540.734Greenwich Village

The following example finds storm events in California. The events are filtered by a California state polygon and aggregated by event type and hash.

let california = dynamic({"type":"Polygon","coordinates":[[[-123.233256,42.006186],[-122.378853,42.011663],[-121.037003,41.995232],[-120.001861,41.995232],[-119.996384,40.264519],[-120.001861,38.999346],[-118.71478,38.101128],[-117.498899,37.21934],[-116.540435,36.501861],[-115.85034,35.970598],[-114.634459,35.00118],[-114.634459,34.87521],[-114.470151,34.710902],[-114.333228,34.448009],[-114.136058,34.305608],[-114.256551,34.174162],[-114.415382,34.108438],[-114.535874,33.933176],[-114.497536,33.697668],[-114.524921,33.54979],[-114.727567,33.40739],[-114.661844,33.034958],[-114.524921,33.029481],[-114.470151,32.843265],[-114.524921,32.755634],[-114.72209,32.717295],[-116.04751,32.624187],[-117.126467,32.536556],[-117.24696,32.668003],[-117.252437,32.876127],[-117.329114,33.122589],[-117.471515,33.297851],[-117.7837,33.538836],[-118.183517,33.763391],[-118.260194,33.703145],[-118.413548,33.741483],[-118.391641,33.840068],[-118.566903,34.042715],[-118.802411,33.998899],[-119.218659,34.146777],[-119.278905,34.26727],[-119.558229,34.415147],[-119.875891,34.40967],[-120.138784,34.475393],[-120.472878,34.448009],[-120.64814,34.579455],[-120.609801,34.858779],[-120.670048,34.902595],[-120.631709,35.099764],[-120.894602,35.247642],[-120.905556,35.450289],[-121.004141,35.461243],[-121.168449,35.636505],[-121.283465,35.674843],[-121.332757,35.784382],[-121.716143,36.195153],[-121.896882,36.315645],[-121.935221,36.638785],[-121.858544,36.6114],[-121.787344,36.803093],[-121.929744,36.978355],[-122.105006,36.956447],[-122.335038,37.115279],[-122.417192,37.241248],[-122.400761,37.361741],[-122.515777,37.520572],[-122.515777,37.783465],[-122.329561,37.783465],[-122.406238,38.15042],[-122.488392,38.112082],[-122.504823,37.931343],[-122.701993,37.893004],[-122.937501,38.029928],[-122.97584,38.265436],[-123.129194,38.451652],[-123.331841,38.566668],[-123.44138,38.698114],[-123.737134,38.95553],[-123.687842,39.032208],[-123.824765,39.366301],[-123.764519,39.552517],[-123.85215,39.831841],[-124.109566,40.105688],[-124.361506,40.259042],[-124.410798,40.439781],[-124.158859,40.877937],[-124.109566,41.025814],[-124.158859,41.14083],[-124.065751,41.442061],[-124.147905,41.715908],[-124.257444,41.781632],[-124.213628,42.000709],[-123.233256,42.006186]]]});
StormEvents
| project BeginLon, BeginLat, EventType
| where geo_point_in_polygon(BeginLon, BeginLat, california)
| summarize count() by EventType, hash = geo_point_to_s2cell(BeginLon, BeginLat, 7)
| project geo_s2cell_to_central_point(hash), EventType, count_
| render piechart with (kind=map) // map rendering available in Kusto Explorer desktop

Output

Screenshot of storm events in California rendered on a map by event type as pie chart indicators.

The following example shows how to classify coordinates to polygons using the partition operator.

let Polygons = datatable(description:string, polygon:dynamic)
    [  
      "New York city area", dynamic({"type":"Polygon","coordinates":[[[-73.85009765625,40.85744791303121],[-74.16046142578125,40.84290487729676],[-74.190673828125,40.59935608796518],[-73.83087158203125,40.61812224225511],[-73.85009765625,40.85744791303121]]]}),
      "Seattle area",       dynamic({"type":"Polygon","coordinates":[[[-122.200927734375,47.68573021131587],[-122.4591064453125,47.68573021131587],[-122.4755859375,47.468949677672484],[-122.17620849609374,47.47266286861342],[-122.200927734375,47.68573021131587]]]}),
      "Las Vegas",          dynamic({"type":"Polygon","coordinates":[[[-114.9,36.36],[-115.4498291015625,36.33282808737917],[-115.4498291015625,35.84453450421662],[-114.949951171875,35.902399875143615],[-114.9,36.36]]]}),
    ];
let Locations = datatable(longitude:real, latitude:real)
    [
      real(-73.95),  real(40.75), // Somewhere in New York
      real(-122.3),  real(47.6),  // Somewhere in Seattle
      real(-115.18), real(36.16)  // Somewhere in Las Vegas
    ];
Polygons
| project polygonPartition = tostring(pack("description", description, "polygon", polygon))
| partition hint.materialized=true hint.strategy=native by polygonPartition
{   
     Locations
     | extend description = parse_json(toscalar(polygonPartition)).description
     | extend polygon = parse_json(toscalar(polygonPartition)).polygon
     | where geo_point_in_polygon(longitude, latitude, polygon)
     | project-away polygon
}

Output

longitudelatitudedescription
-73.9540.75New York city area
-122.347.6Seattle area
-115.1836.16Las Vegas

See also geo_polygon_to_s2cells().

The following example folds several polygons into one multipolygon and checks locations that fall within the multipolygon.

let Polygons = 
    datatable(polygon:dynamic)
    [
        dynamic({"type":"Polygon","coordinates":[[[-73.991460000000131,40.731738000000206],[-73.992854491775518,40.730082566051351],[-73.996772,40.725432000000154],[-73.997634685522883,40.725786309886963],[-74.002855946639244,40.728346630056791],[-74.001413,40.731065000000207],[-73.996796995070824,40.73736378205173],[-73.991724524037934,40.735245208931886],[-73.990703782359589,40.734781896080477],[-73.991460000000131,40.731738000000206]]]}),
        dynamic({"type":"Polygon","coordinates":[[[-73.958357552055688,40.800369095633819],[-73.98143901556422,40.768762584141953],[-73.981548752788598,40.7685590292784],[-73.981565335901905,40.768307084720796],[-73.981754418060945,40.768399727738668],[-73.982038573548124,40.768387823012056],[-73.982268248204349,40.768298621883247],[-73.982384797518051,40.768097213086911],[-73.982320919746599,40.767894461792181],[-73.982155532845766,40.767756204474757],[-73.98238873834039,40.767411004834273],[-73.993650353659021,40.772145571634361],[-73.99415893763998,40.772493009137818],[-73.993831082030937,40.772931787850908],[-73.993891252437052,40.772955194876722],[-73.993962585514595,40.772944653908901],[-73.99401262480508,40.772882846631894],[-73.994122058082397,40.77292405902601],[-73.994136652588594,40.772901870174394],[-73.994301342391154,40.772970028663913],[-73.994281535134448,40.77299380206933],[-73.994376552751078,40.77303955110149],[-73.994294029824005,40.773156243992048],[-73.995023275860802,40.773481196576356],[-73.99508939189289,40.773388475039134],[-73.995013963716758,40.773358035426909],[-73.995050284699261,40.773297153189958],[-73.996240651898916,40.773789791397689],[-73.996195837470992,40.773852356184044],[-73.996098807369748,40.773951805299085],[-73.996179459973888,40.773986954351571],[-73.996095245226442,40.774086186437756],[-73.995572265161172,40.773870731394297],[-73.994017424135961,40.77321375261053],[-73.993935876811335,40.773179512586211],[-73.993861942928888,40.773269531698837],[-73.993822393527211,40.773381758622882],[-73.993767019318497,40.773483981224835],[-73.993698463744295,40.773562141052594],[-73.993358326468751,40.773926888327956],[-73.992622663865575,40.774974056037109],[-73.992577842766124,40.774956016359418],[-73.992527743951555,40.775002110439829],[-73.992469745815342,40.775024159551755],[-73.992403837191887,40.775018140390664],[-73.99226708903538,40.775116033858794],[-73.99217809026365,40.775279293897171],[-73.992059084937338,40.775497598192516],[-73.992125372394938,40.775509075053385],[-73.992226867797001,40.775482211026116],[-73.992329346608813,40.775468900958522],[-73.992361756801131,40.775501899766638],[-73.992386042960277,40.775557180424634],[-73.992087684712729,40.775983970821372],[-73.990927174149746,40.777566878763238],[-73.99039616003671,40.777585065679204],[-73.989461267506471,40.778875124584417],[-73.989175778438053,40.779287524015778],[-73.988868617400072,40.779692922911607],[-73.988871874499793,40.779713738253008],[-73.989219022880576,40.779697895209402],[-73.98927785904425,40.779723439271038],[-73.989409054180143,40.779737706471963],[-73.989498614927044,40.779725044389757],[-73.989596493388234,40.779698146683387],[-73.989679812902509,40.779677568658038],[-73.989752702937935,40.779671244211556],[-73.989842247806507,40.779680752670664],[-73.990040102120489,40.779707677698219],[-73.990137977524839,40.779699769704784],[-73.99033584033225,40.779661794394983],[-73.990430598697046,40.779664973055503],[-73.990622199396725,40.779676064914298],[-73.990745069505479,40.779671328184051],[-73.990872114282197,40.779646007643876],[-73.990961672224358,40.779639683751753],[-73.991057472829539,40.779652352625774],[-73.991157429497036,40.779669775606465],[-73.991242817404469,40.779671367084504],[-73.991255318289745,40.779650782516491],[-73.991294887120119,40.779630209208889],[-73.991321967649895,40.779631796041372],[-73.991359455569423,40.779585883337383],[-73.991551059227476,40.779574821437407],[-73.99141982585985,40.779755280287233],[-73.988886144117032,40.779878898532999],[-73.988939656706265,40.779956178440393],[-73.988926103530844,40.780059292013632],[-73.988911680264692,40.780096037146606],[-73.988919261468567,40.780226094343945],[-73.988381050202634,40.780981074045783],[-73.988232413846987,40.781233144215555],[-73.988210420831663,40.781225482542055],[-73.988140000000143,40.781409000000224],[-73.988041288067166,40.781585961353777],[-73.98810029382463,40.781602878305286],[-73.988076449145055,40.781650935001608],[-73.988018059972219,40.781634188810422],[-73.987960792842145,40.781770987031535],[-73.985465811970457,40.785360700575431],[-73.986172704965611,40.786068452258647],[-73.986455862401996,40.785919219081421],[-73.987072345615601,40.785189638820121],[-73.98711901394276,40.785210319004058],[-73.986497781023601,40.785951202887254],[-73.986164628806279,40.786121882448327],[-73.986128422486075,40.786239001331111],[-73.986071135219746,40.786240706026611],[-73.986027274789123,40.786228964236727],[-73.986097637849426,40.78605822569795],[-73.985429321269592,40.785413942184597],[-73.985081137732209,40.785921935110366],[-73.985198833254501,40.785966552197777],[-73.985170502389906,40.78601333415817],[-73.985216218673656,40.786030501816427],[-73.98525509797993,40.785976205511588],[-73.98524273937646,40.785972572653328],[-73.98524962933017,40.785963139855845],[-73.985281779186749,40.785978620950075],[-73.985240032884533,40.786035858136792],[-73.985683885242182,40.786222123919686],[-73.985717529004575,40.786175994668795],[-73.985765660297687,40.786196274858618],[-73.985682871922691,40.786309786213067],[-73.985636270930442,40.786290150649279],[-73.985670722564691,40.786242911993817],[-73.98520511880038,40.786047669212785],[-73.985211035607492,40.786039554883686],[-73.985162639946992,40.786020999769754],[-73.985131636312062,40.786060297019972],[-73.985016964065125,40.78601423719563],[-73.984655078830457,40.786534741807841],[-73.985743787901043,40.786570082854738],[-73.98589227228328,40.786426529019593],[-73.985942854994988,40.786452847880334],[-73.985949561556794,40.78648711396653],[-73.985812373526713,40.786616865357047],[-73.985135209703174,40.78658761889551],[-73.984619428584324,40.786586016349787],[-73.981952458164173,40.790393724337193],[-73.972823037363767,40.803428052816756],[-73.971036786332192,40.805918478839672],[-73.966701,40.804169000000186],[-73.959647,40.801156000000113],[-73.958508540159471,40.800682279767472],[-73.95853274080838,40.800491362464697],[-73.958357552055688,40.800369095633819]]]}),
        dynamic({"type":"Polygon","coordinates":[[[-73.943592454622546,40.782747908206574],[-73.943648235390199,40.782656161333449],[-73.943870759887162,40.781273026571704],[-73.94345932494096,40.780048275653243],[-73.943213862652243,40.779317588660199],[-73.943004239504688,40.779639495474292],[-73.942716005450905,40.779544169476175],[-73.942712374762181,40.779214856940001],[-73.942535563208608,40.779090956062532],[-73.942893408188027,40.778614093246276],[-73.942438481745029,40.777315235766039],[-73.942244919522594,40.777104088947254],[-73.942074188038887,40.776917846977142],[-73.942002667222781,40.776185317382648],[-73.942620205199006,40.775180871576474],[-73.94285645694552,40.774796600349191],[-73.94293043781397,40.774676268036011],[-73.945870899588215,40.771692257932997],[-73.946618690150586,40.77093339256956],[-73.948664164778933,40.768857624399587],[-73.950069793030679,40.767025088383498],[-73.954418260786071,40.762184104951245],[-73.95650786241211,40.760285256574043],[-73.958787773424007,40.758213471309809],[-73.973015157270069,40.764278692864671],[-73.955760332998182,40.787906554459667],[-73.944023,40.782960000000301],[-73.943592454622546,40.782747908206574]]]}),
    ];
let Coordinates = 
    datatable(longitude:real, latitude:real, description:string)
    [
        real(-73.9741), 40.7914, 'Upper West Side',
        real(-73.9950), 40.7340, 'Greenwich Village',
        real(-73.8743), 40.7773, 'LaGuardia Airport',
    ];
let multipolygon = toscalar(
    Polygons
    | project individual_polygon = pack_array(polygon.coordinates)
    | summarize multipolygon_coordinates = make_list(individual_polygon)
    | project multipolygon = bag_pack("type","MultiPolygon", "coordinates", multipolygon_coordinates));
Coordinates
| where geo_point_in_polygon(longitude, latitude, multipolygon)

Output

longitudelatitudedescription
-73.974140.7914Upper West Side
-73.99540.734Greenwich Village

The following example returns a null result because of the invalid coordinate input.

print in_polygon = geo_point_in_polygon(200,1,dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,1],[0,0]]]}))

Output

in_polygon

The following example returns a null result because of the invalid polygon input.

print in_polygon = geo_point_in_polygon(1,1,dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]}))

Output

in_polygon

31 - geo_point_to_geohash()

Learn how to use the geo_point_to_geohash() function to calculate the geohash string value of a geographic location.

Calculates the geohash string value of a geographic location.

Read more about geohash.

Syntax

geo_point_to_geohash(longitude, latitude,[ accuracy ])

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate, longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate, latitude value in degrees. Valid value is a real number and in the range [-90, +90].
accuracyintDefines the requested accuracy. Supported values are in the range [1, 18]. If unspecified, the default value 5 is used.

Returns

The geohash string value of a given geographic location with requested accuracy length. If the coordinate or accuracy is invalid, the query produces an empty result.

Geohash rectangular area coverage per accuracy value:

AccuracyWidthHeight
15000 km5000 km
21250 km625 km
3156.25 km156.25 km
439.06 km19.53 km
54.88 km4.88 km
61.22 km0.61 km
7152.59 m152.59 m
838.15 m19.07 m
94.77 m4.77 m
101.19 m0.59 m
11149.01 mm149.01 mm
1237.25 mm18.63 mm
134.66 mm4.66 mm
141.16 mm0.58 mm
15145.52 μ145.52 μ
1636.28 μ18.19 μ
174.55 μ4.55 μ
181.14 μ0.57 μ

See also geo_point_to_s2cell(), geo_point_to_h3cell().

Examples

The following example finds US storm events aggregated by geohash.

StormEvents
| project BeginLon, BeginLat
| summarize by hash=geo_point_to_geohash(BeginLon, BeginLat, 3)
| project geo_geohash_to_central_point(hash)
| render scatterchart with (kind=map)

Output

Screenshot of US storm events grouped by geohash.

The following example calculates and returns the geohash string value.

print geohash = geo_point_to_geohash(-80.195829, 25.802215, 8)

Output

geohash
dhwfz15h

The following example finds groups of coordinates. Every pair of coordinates in the group resides in a rectangular area of 4.88 km by 4.88 km.

datatable(location_id:string, longitude:real, latitude:real)
[
  "A", double(-122.303404), 47.570482,
  "B", double(-122.304745), 47.567052,
  "C", double(-122.278156), 47.566936,
]
| summarize count = count(),                                          // items per group count
            locations = make_list(location_id)                        // items in the group
            by geohash = geo_point_to_geohash(longitude, latitude)    // geohash of the group

Output

geohashcountlocations
c23n82[“A”, “B”]
c23n91[“C”]

The following example produces an empty result because of the invalid coordinate input.

print geohash = geo_point_to_geohash(200,1,8)

Output

geohash

The following example produces an empty result because of the invalid accuracy input.

print geohash = geo_point_to_geohash(1,1,int(null))

Output

geohash

32 - geo_point_to_h3cell()

Learn how to use the geo_point_to_h3cell() function to calculate the H3 Cell token string value of a geographic location.

Calculates the H3 Cell token string value of a geographic location.

Read more about H3 Cell.

Syntax

geo_point_to_h3cell(longitude, latitude, [ resolution ])

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate, longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate, latitude value in degrees. Valid value is a real number and in the range [-90, +90].
resolutionintDefines the requested cell resolution. Supported values are in the range [0, 15]. If unspecified, the default value 6 is used.

Returns

The H3 Cell token string value of a given geographic location. If the coordinates or levels are invalid, the query will produce an empty result.

H3 Cell approximate area coverage per resolution value

LevelAverage Hexagon Edge Length
01108 km
1419 km
2158 km
360 km
423 km
58 km
63 km
71 km
8460 m
9174 m
1066 m
1125 m
129 m
133 m
141 m
150.5 m

The table source can be found in this H3 Cell statistical resource.

See also geo_point_to_s2cell(), geo_point_to_geohash().

Examples

print h3cell = geo_point_to_h3cell(-74.04450446039874, 40.689250859314974, 6)

Output

h3cell
862a1072fffffff

The following example finds groups of coordinates. Every pair of coordinates in the group resides in the H3 Cell with average hexagon area of 253 km².

datatable(location_id:string, longitude:real, latitude:real)
[
    "A", -73.956683, 40.807907,
    "B", -73.916869, 40.818314,
    "C", -73.989148, 40.743273,
]
| summarize count = count(),                                         // Items per group count
            locations = make_list(location_id)                       // Items in the group
            by h3cell = geo_point_to_h3cell(longitude, latitude, 5)  // H3 Cell of the group

Output

h3cellcountlocations
852a100bfffffff2[
“A”,
“B”
]
852a1073fffffff1[
“C”
]

The following example produces an empty result because of the invalid coordinate input.

print h3cell = geo_point_to_h3cell(300,1,8)

Output

h3cell

The following example produces an empty result because of the invalid level input.

print h3cell = geo_point_to_h3cell(1,1,16)

Output

h3cell

The following example produces an empty result because of the invalid level input.

print h3cell = geo_point_to_h3cell(1,1,int(null))

Output

h3cell

33 - geo_point_to_s2cell()

Learn how to use the geo_point_to_s2cell() function to calculate the S2 cell token string value of a geographic location.

Calculates the S2 cell token string value of a geographic location.

Read more about S2 cell hierarchy. S2 cell can be a useful geospatial clustering tool. An S2 cell is a cell on a spherical surface and it has geodesic edges. S2 cells are part of a hierarchy dividing up the Earth’s surface. They have a maximum of 31 levels, ranging from zero to 30, which define the number of times a cell is subdivided. Levels range from the largest coverage on level zero with area coverage of 85,011,012.19km², to the lowest coverage of 0.44 cm² at level 30. As S2 cells are subdivided at higher levels, the cell center is preserved well. Two geographic locations can be very close to each other but they have different S2 cell tokens.

Read more about S2 cell hierarchy.

Syntax

geo_point_to_s2cell(longitude, latitude, [ level ])

Parameters

NameTypeRequiredDescription
longitudereal✔️Geospatial coordinate, longitude value in degrees. Valid value is a real number and in the range [-180, +180].
latitudereal✔️Geospatial coordinate, latitude value in degrees. Valid value is a real number and in the range [-90, +90].
levelintDefines the requested cell level. Supported values are in the range [0, 30]. If unspecified, the default value 11 is used.

Returns

The S2 cell token string value of a given geographic location. If the coordinates or levels are invalid, the query produces an empty result.

S2 cell approximate area coverage per level value

For every level, the size of the S2 cell is similar but not exactly equal. Nearby cell sizes tend to be more equal.

LevelMinimum random cell edge length (UK)Maximum random cell edge length (US)
07842 km7842 km
13921 km5004 km
21825 km2489 km
3840 km1310 km
4432 km636 km
5210 km315 km
6108 km156 km
754 km78 km
827 km39 km
914 km20 km
107 km10 km
113 km5 km
121699 m2 km
13850 m1225 m
14425 m613 m
15212 m306 m
16106 m153 m
1753 m77 m
1827 m38 m
1913 m19 m
207 m10 m
213 m5 m
22166 cm2 m
2383 cm120 cm
2441 cm60 cm
2521 cm30 cm
2610 cm15 cm
275 cm7 cm
282 cm4 cm
2912 mm18 mm
306 mm9 mm

The table source can be found in this S2 Cell statistical resource.

Examples

US storm events aggregated by S2 cell

The following example finds US storm events aggregated by S2 cells.

StormEvents
| project BeginLon, BeginLat
| summarize by hash=geo_point_to_s2cell(BeginLon, BeginLat, 5)
| project geo_s2cell_to_central_point(hash)
| render scatterchart with (kind=map)

Output

Screenshot of a map rendering of US storm events aggregated by S2 cell.

The following example calculates the S2 cell ID.

print s2cell = geo_point_to_s2cell(-80.195829, 25.802215, 8)

Output

s2cell
88d9b

Find a group of coordinates

The following example finds groups of coordinates. Every pair of coordinates in the group resides in the S2 cell with a maximum area of 1632.45 km².

datatable(location_id:string, longitude:real, latitude:real)
[
  "A", 10.1234, 53,
  "B", 10.3579, 53,
  "C", 10.6842, 53,
]
| summarize count = count(),                                        // items per group count
            locations = make_list(location_id)                      // items in the group
            by s2cell = geo_point_to_s2cell(longitude, latitude, 8) // s2 cell of the group

Output

s2cellcountlocations
47b1d2[“A”,“B”]
47ae31[“C”]

Empty results

The following example produces an empty result because of the invalid coordinate input.

print s2cell = geo_point_to_s2cell(300,1,8)

Output

s2cell

The following example produces an empty result because of the invalid level input.

print s2cell = geo_point_to_s2cell(1,1,35)

Output

s2cell

The following example produces an empty result because of the invalid level input.

print s2cell = geo_point_to_s2cell(1,1,int(null))

Output

s2cell

34 - geo_polygon_area()

Learn how to use the geo_polygon_area() function to calculate the area of a polygon or a multipolygon on Earth.

Calculates the area of a polygon or a multipolygon on Earth.

Syntax

geo_polygon_area(polygon)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

The area of a polygon or a multipolygon, in square meters, on Earth. If the polygon or the multipolygon is invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.

Examples

The following example calculates NYC Central Park area.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print area = geo_polygon_area(central_park)

Output

area
3475207.28346606

The following example performs union of polygons in multipolygon and calculates area on the unified polygon.

let polygons = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]],[[[-73.94262313842773,40.775991804565585],[-73.98107528686523,40.791849155467695],[-73.99600982666016,40.77092185281977],[-73.96150588989258,40.75609977566361],[-73.94262313842773,40.775991804565585]]]]});
print polygons_union_area = geo_polygon_area(polygons)

Output

polygons_union_area
10889971.5343487

The following example calculates top 5 biggest US states by area.

US_States
| project name = features.properties.NAME, polygon = geo_polygon_densify(features.geometry)
| project name, area = geo_polygon_area(polygon)
| top 5 by area desc

Output

namearea
Alaska1550934810070.61
Texas693231378868.483
California410339536449.521
Montana379583933973.436
New Mexico314979912310.579

The following example returns True because of the invalid polygon.

print isnull(geo_polygon_area(dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]})))

Output

print_0
True

35 - geo_polygon_buffer()

Learn how to use the geo_polygon_buffer() function to calculate polygon buffer

Calculates polygon or multipolygon that contains all points within the given radius of the input polygon or multipolygon on Earth.

Syntax

geo_polygon_buffer(polygon, radius, tolerance)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
radiusreal✔️Buffer radius in meters. Valid value must be positive.
tolerancerealDefines the tolerance in meters that determines how much a polygon can deviate from the ideal radius. If unspecified, the default value 10 is used. Tolerance should be no lower than 0.0001% of the radius. Specifying tolerance bigger than radius will lower the tolerance to biggest possible value below the radius.

Returns

Polygon or MultiPolygon around the input Polygon or multipolygon. If the coordinates or radius or tolerance is invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [LinearRingShell, LinearRingHole_1, …, LinearRingHole_N]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[LinearRingShell, LinearRingHole_1, …, LinearRingHole_N], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1], …, [lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1], …,[lng_i,lat_i], …,[lng_j,lat_j], …,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.
  • Polygon contains its vertices.

Examples

The following query calculates polygon around input polygon, with radius of 10km.

let polygon = dynamic({"type":"Polygon","coordinates":[[[139.813757,35.719666],[139.72558,35.71813],[139.727471,35.653231],[139.818721,35.657264],[139.813757,35.719666]]]});
print buffer = geo_polygon_buffer(polygon, 10000)
buffer
{“type”: “Polygon”,“coordinates”: [ … ]}

The following query calculates buffer around each polygon and unifies result

datatable(polygon:dynamic, radius:real )
[
    dynamic({"type":"Polygon","coordinates":[[[12.451218693639277,41.906457003556625],[12.445753852969375,41.90160968881543],[12.453514425793855,41.90361551885886],[12.451218693639277,41.906457003556625]]]}), 100,
    dynamic({"type":"Polygon","coordinates":[[[12.4566086734784,41.905119850039995],[12.453913683559591,41.903652663265234],[12.455485761012113,41.90146110630562],[12.4566086734784,41.905119850039995]]]}), 20
]
| project buffer = geo_polygon_buffer(polygon, radius)
| summarize polygons = make_list(buffer)
| project result = geo_union_polygons_array(polygons)
result
{“type”: “Polygon”,“coordinates”: [ … ]}

The following example will return true, due to invalid polygon.

print buffer = isnull(geo_polygon_buffer(dynamic({"type":"p"}), 1))
buffer
True

The following example will return true, due to invalid radius.

print buffer = isnull(geo_polygon_buffer(dynamic({"type":"Polygon","coordinates":[[[10,10],[0,10],[0,0],[10,10]]]}), 0))
buffer
True

36 - geo_polygon_centroid()

Learn how to use the geo_polygon_centroid() function to calculate the centroid of a polygon or a multipolygon on Earth.

Calculates the centroid of a polygon or a multipolygon on Earth.

Syntax

geo_polygon_centroid(polygon)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

The centroid coordinate values in GeoJSON Format and of a dynamic data type. If polygon or multipolygon are invalid, the query produces a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions and chooses the smaller of the two regions.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices is chosen.
  • LinearRings must not cross and must not share edges. LinearRings might share vertices.

Examples

The following example calculates the Central Park centroid in New York City.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print centroid = geo_polygon_centroid(central_park)

Output

centroid
{“type”: “Point”, “coordinates”: [-73.965735689907618, 40.782550538057812]}

The following example calculates the Central Park centroid longitude.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print 
centroid = geo_polygon_centroid(central_park)
| project lng = centroid.coordinates[0]

Output

lng
-73.9657356899076

The following example performs union of polygons in multipolygon and calculates the centroid of the unified polygon.

let polygons = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]],[[[-73.94262313842773,40.775991804565585],[-73.98107528686523,40.791849155467695],[-73.99600982666016,40.77092185281977],[-73.96150588989258,40.75609977566361],[-73.94262313842773,40.775991804565585]]]]});
print polygons_union_centroid = geo_polygon_centroid(polygons)

Output

polygons_union_centroid
“type”: “Point”, “coordinates”: [-73.968569587829577, 40.776310752555119]}

The following example visualizes the Central Park centroid on a map.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print 
centroid = geo_polygon_centroid(central_park)
| render scatterchart with (kind = map)

Output

Screenshot of New York City Central park centroid.

The following example returns true because of the invalid polygon.

print isnull(geo_polygon_centroid(dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]})))

Output

print_0
true

37 - geo_polygon_densify()

Learn how to use the geo_polygon_densify() function to convert polygon or multipolygon planar edges to geodesics.

Converts polygon or multipolygon planar edges to geodesics by adding intermediate points.

Syntax

geo_polygon_densify(polygon, tolerance, [ preserve_crossing ])

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
toleranceint, long, or realDefines maximum distance in meters between the original planar edge and the converted geodesic edge chain. Supported values are in the range [0.1, 10000]. If unspecified, the default value is 10.
preserve_crossingboolIf true, preserves edge crossing over antimeridian. If unspecified, the default value false is used.

Polygon definition

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Constraints

  • The maximum number of points in the densified polygon is limited to 10485760.
  • Storing polygons in dynamic format has size limits.
  • Densifying a valid polygon may invalidate the polygon. The algorithm adds points in a non-uniform manner, and as such may cause edges to intertwine with each other.

Motivation

  • GeoJSON format defines an edge between two points as a straight cartesian line while geo_polygon_densify() uses geodesic.
  • The decision to use geodesic or planar edges might depend on the dataset and is especially relevant in long edges.

Returns

Densified polygon in the GeoJSON format and of a dynamic data type. If either the polygon or tolerance is invalid, the query produces a null result.

Examples

The following example densifies Manhattan Central Park polygon. The edges are short and the distance between planar edges and their geodesic counterparts is less than the distance specified by tolerance. As such, the result remains unchanged.

print densified_polygon = tostring(geo_polygon_densify(dynamic({"type":"Polygon","coordinates":[[[-73.958244,40.800719],[-73.949146,40.79695],[-73.973093,40.764226],[-73.982062,40.768159],[-73.958244,40.800719]]]})))

Output

densified_polygon
{“type”:“Polygon”,“coordinates”:[[[-73.958244,40.800719],[-73.949146,40.79695],[-73.973093,40.764226],[-73.982062,40.768159],[-73.958244,40.800719]]]}

The following example densifies two edges of the polygon. Densified edges length is ~110 km

print densified_polygon = tostring(geo_polygon_densify(dynamic({"type":"Polygon","coordinates":[[[10,10],[11,10],[11,11],[10,11],[10,10]]]})))

Output

densified_polygon
{“type”:“Polygon”,“coordinates”:[[[10,10],[10.25,10],[10.5,10],[10.75,10],[11,10],[11,11],[10.75,11],[10.5,11],[10.25,11],[10,11],[10,10]]]}

The following example returns a null result because of the invalid coordinate input.

print densified_polygon = geo_polygon_densify(dynamic({"type":"Polygon","coordinates":[[[10,900],[11,10],[11,11],[10,11],[10,10]]]}))

Output

densified_polygon

The following example returns a null result because of the invalid tolerance input.

print densified_polygon = geo_polygon_densify(dynamic({"type":"Polygon","coordinates":[[[10,10],[11,10],[11,11],[10,11],[10,10]]]}), 0)

Output

densified_polygon

38 - geo_polygon_perimeter()

Learn how to use the geo_polygon_perimeter() function to calculate the length of the boundary of a polygon or a multipolygon on Earth.

Calculates the length of the boundary of a polygon or a multipolygon on Earth.

Syntax

geo_polygon_perimeter(polygon)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.

Returns

The length of the boundary of polygon or a multipolygon, in meters, on Earth. If polygon or multipolygon are invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.

Examples

The following example calculates the NYC Central Park perimeter, in meters.

let central_park = dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]]});
print perimeter = geo_polygon_perimeter(central_park)

Output

perimeter
9930.30149604938

The following example performs union of polygons in multipolygon and calculates perimeter of the unified polygon.

let polygons = dynamic({"type":"MultiPolygon","coordinates":[[[[-73.9495,40.7969],[-73.95807266235352,40.80068603561921],[-73.98201942443848,40.76825672305777],[-73.97317886352539,40.76455136505513],[-73.9495,40.7969]]],[[[-73.94262313842773,40.775991804565585],[-73.98107528686523,40.791849155467695],[-73.99600982666016,40.77092185281977],[-73.96150588989258,40.75609977566361],[-73.94262313842773,40.775991804565585]]]]});
print perimeter = geo_polygon_perimeter(polygons)

Output

perimeter
15943.5384578745

The following example returns True because of the invalid polygon.

print is_invalid = isnull(geo_polygon_perimeter(dynamic({"type": "Polygon","coordinates": [[[0,0],[10,10],[10,10],[0,0]]]})))

Output

is_invalid
True

39 - geo_polygon_simplify()

Learn how to use the geo_polygon_simplify() function to simplify a polygon or a multipolygon.

Simplifies a polygon or a multipolygon by replacing nearly straight chains of short edges with a single long edge on Earth.

Syntax

geo_polygon_simplify(polygon, tolerance)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
toleranceint, long, or realDefines maximum distance in meters between the original planar edge and the converted geodesic edge chain. Supported values are in the range [0.1, 10000]. If unspecified, the default value is 10.

Returns

Simplified polygon or a multipolygon in the GeoJSON format and of a dynamic data type, with no two vertices with distance less than tolerance. If either the polygon or tolerance is invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.

Examples

The following example simplifies polygons by removing vertices that are within a 10-meter distance from each other.

let polygon = dynamic({"type":"Polygon","coordinates":[[[-73.94885122776031,40.79673476355657],[-73.94885927438736,40.79692258628347],[-73.94887939095497,40.79692055577034],[-73.9488673210144,40.79693476936093],[-73.94888743758202,40.79693476936093],[-73.9488834142685,40.796959135509105],[-73.94890084862709,40.79695304397289],[-73.94906312227248,40.79710736271788],[-73.94923612475395,40.7968708081794],[-73.94885122776031,40.79673476355657]]]});
print simplified = geo_polygon_simplify(polygon)

Output

simplified
{“type”: “Polygon”, “coordinates”: [[[-73.948851227760315, 40.796734763556572],[-73.949063122272477, 40.797107362717881],[-73.949236124753952, 40.7968708081794],[-73.948851227760315, 40.796734763556572]]]}

The following example simplifies polygons and combines results into GeoJSON geometry collection.

Polygons
| project polygon = features.geometry
| project simplified = geo_polygon_simplify(polygon, 1000)
| summarize lst = make_list(simplified)
| project geojson = bag_pack("type", "Feature","geometry", bag_pack("type", "GeometryCollection", "geometries", lst), "properties", bag_pack("name", "polygons"))

Output

geojson
{“type”: “Feature”, “geometry”: {“type”: “GeometryCollection”, “geometries”: [ … ]}, “properties”: {“name”: “polygons”}}

The following example simplifies polygons and unifies result

US_States
| project polygon = features.geometry
| project simplified = geo_polygon_simplify(polygon, 1000)
| summarize lst = make_list(simplified)
| project polygons = geo_union_polygons_array(lst)

Output

polygons
{“type”: “MultiPolygon”, “coordinates”: [ … ]}

The following example returns True because of the invalid polygon.

let polygon = dynamic({"type":"Polygon","coordinates":[[[5,48],[5,48]]]});
print is_invalid_polygon = isnull(geo_polygon_simplify(polygon))

Output

is_invalid_polygon
1

The following example returns True because of the invalid tolerance.

let polygon = dynamic({"type":"Polygon","coordinates":[[[5,48],[0,50],[0,47],[4,47],[5,48]]]});
print is_invalid_polygon = isnull(geo_polygon_simplify(polygon, -0.1))

Output

is_invalid_polygon
1

The following example returns True because high tolerance causes polygon to disappear.

let polygon = dynamic({"type":"Polygon","coordinates":[[[5,48],[0,50],[0,47],[4,47],[5,48]]]});
print is_invalid_polygon = isnull(geo_polygon_simplify(polygon, 1000000))

Output

is_invalid_polygon
1

40 - geo_polygon_to_h3cells()

Learn how to use the geo_polygon_to_h3cells() function to calculate H3 cells for a polygon

Converts polygon to H3 cells. This function is a useful geospatial join and visualization tool.

Syntax

geo_polygon_to_h3cells(polygon [, resolution[, radius]])

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
resolutionintDefines the requested cell resolution. Supported values are in the range [0, 15]. If unspecified, the default value 6 is used.
radiusrealBuffer radius in meters. If unspecified, the default value 0 is used.

Returns

Array of H3 cell token strings of the same resolution that represet a polygon or a multipolygon. If radius is set to a positive value, then the polygon will be enlarged such that all points within the given radius of the input polygon or multipolygon will be contained inside and the newly calculated polygon that will be converted to H3 cells. If polygon, resolution, radius is invalid, or the cell count exceeds the limit, the query will produce a null result.

Seel also geo_polygon_to_s2cells().

Examples

The following example calculates H3 cells that approximate the polygon.

let polygon = dynamic({"type":"Polygon","coordinates":[[[-3.659,40.553],[-3.913,40.409],[-3.729,40.273],[-3.524,40.440],[-3.659,40.553]]]});
print h3_cells = geo_polygon_to_h3cells(polygon)

Output

h3_cells
[“86390cb57ffffff”,“86390cb0fffffff”,“86390ca27ffffff”,“86390cb87ffffff”,“86390cb07ffffff”,“86390ca2fffffff”,“86390ca37ffffff”,“86390cb17ffffff”,“86390cb1fffffff”,“86390cb8fffffff”,“86390cba7ffffff”,“86390ca07ffffff”,“86390cbafffffff”]

The following example demonstrates a multipolygon that consists of H3 cells that approximate the above polygon. Specifing a higher resolution will improve polygon approximation.

let polygon = dynamic({"type":"Polygon","coordinates":[[[-3.659,40.553],[-3.913,40.409],[-3.729,40.273],[-3.524,40.440],[-3.659,40.553]]]});
print h3_cells = geo_polygon_to_h3cells(polygon)
| mv-expand cell = h3_cells to typeof(string) // extract cell to a separate row
| project polygon_cell = geo_h3cell_to_polygon(cell) // convert each cell to a polygon
| project individual_polygon_coordinates = pack_array(polygon_cell.coordinates)
| summarize multipolygon_coordinates = make_list(individual_polygon_coordinates)
| project multipolygon = bag_pack("type","MultiPolygon", "coordinates", multipolygon_coordinates)

Output

multipolygon
{“type”: “MultiPolygon”,
“coordinates”: [ … ]}

The following example return null because the polygon is invalid.

let polygon = dynamic({"type":"Polygon","coordinates":[[[0,0],[1,1]]]});
print is_null = isnull(geo_polygon_to_h3cells(polygon))

Output

is_null
True

41 - geo_polygon_to_s2cells()

Learn how to use the geo_polygon_to_s2cells() function to calculate S2 cell tokens that cover a polygon or a multipolygon on Earth.

Calculates S2 cell tokens that cover a polygon or multipolygon on Earth. This function is a useful geospatial join tool.

Read more about S2 cell hierarchy.

Syntax

geo_polygon_to_s2cells(polygon [, level[, radius]])

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
levelintDefines the requested cell level. Supported values are in the range [0, 30]. If unspecified, the default value 11 is used.
radiusrealBuffer radius in meters. If unspecified, the default value 0 is used.

Returns

Array of S2 cell token strings that cover a polygon or a multipolygon. If radius is set to a positive value, then the covering will be, in addition to input shape, of all points within the radius of the input geometry. If polygon, level, radius is invalid, or the cell count exceeds the limit, the query will produce a null result.

Motivation for covering polygons with S2 cell tokens

Without this function, here’s one approach we could take in order to classify coordinates into polygons containing these coordinates.

let Polygons = 
    datatable(description:string, polygon:dynamic)
    [  
      "New York",  dynamic({"type":"Polygon","coordinates":[[[-73.85009765625,40.85744791303121],[-74.16046142578125,40.84290487729676],[-74.190673828125,40.59935608796518],[-73.83087158203125,40.61812224225511],[-73.85009765625,40.85744791303121]]]}),
      "Seattle",   dynamic({"type":"Polygon","coordinates":[[[-122.200927734375,47.68573021131587],[-122.4591064453125,47.68573021131587],[-122.4755859375,47.468949677672484],[-122.17620849609374,47.47266286861342],[-122.200927734375,47.68573021131587]]]}),
      "Las Vegas", dynamic({"type":"Polygon","coordinates":[[[-114.9,36.36],[-115.4498291015625,36.33282808737917],[-115.4498291015625,35.84453450421662],[-114.949951171875,35.902399875143615],[-114.9,36.36]]]}),
    ];
let Coordinates = 
    datatable(longitude:real, latitude:real)
    [
      real(-73.95),  real(40.75), // New York
      real(-122.3),  real(47.6),  // Seattle
      real(-115.18), real(36.16)  // Las Vegas
    ];
Polygons | extend dummy=1
| join kind=inner (Coordinates | extend dummy=1) on dummy
| where geo_point_in_polygon(longitude, latitude, polygon)
| project longitude, latitude, description

Output

longitudelatitudedescription
-73.9540.75New York city
-122.347.6Seattle
-115.1836.16Las Vegas

While this method works in some cases, it’s inefficient. This method does a cross-join, meaning that it tries to match every polygon to every point. This process consumes a large amount of memory and compute resources. Instead, we would like to match every polygon to a point with a high probability of containment success, and filter out other points.

This match can be achieved by the following process:

  1. Converting polygons to S2 cells of level k,
  2. Converting points to the same S2 cells level k,
  3. Joining on S2 cells,
  4. Filtering by geo_point_in_polygon(). This phase can be omitted if some amount of false positives is ok. The maximum error will be the area of s2 cells at level k beyond the boundary of the polygon.

Choosing the S2 cell level

  • Ideally we would want to cover every polygon with one or just a few unique cells such that no two polygons share the same cell.
  • If the polygons are close to each other, choose the S2 cell level such that its cell edge will be smaller (4, 8, 12 times smaller) than the edge of the average polygon.
  • If the polygons are far from each other, choose the S2 cell level such that its cell edge will be similar or bigger than the edge of the average polygon.
  • In practice, covering a polygon with more than 10,000 cells might not yield good performance.
  • Sample use cases:
  • S2 cell level 5 might prove to be good for covering countries/regions.
  • S2 cell level 16 can cover dense and relatively small Manhattan (New York) neighborhoods.
  • S2 cell level 11 can be used for covering suburbs of Australia.
  • Query run time and memory consumption might differ greatly because of different S2 cell level values.

Examples

The following example classifies coordinates into polygons.

let Polygons = 
    datatable(description:string, polygon:dynamic)
    [
        'Greenwich Village', dynamic({"type":"Polygon","coordinates":[[[-73.991460000000131,40.731738000000206],[-73.992854491775518,40.730082566051351],[-73.996772,40.725432000000154],[-73.997634685522883,40.725786309886963],[-74.002855946639244,40.728346630056791],[-74.001413,40.731065000000207],[-73.996796995070824,40.73736378205173],[-73.991724524037934,40.735245208931886],[-73.990703782359589,40.734781896080477],[-73.991460000000131,40.731738000000206]]]}),
        'Upper West Side',   dynamic({"type":"Polygon","coordinates":[[[-73.958357552055688,40.800369095633819],[-73.98143901556422,40.768762584141953],[-73.981548752788598,40.7685590292784],[-73.981565335901905,40.768307084720796],[-73.981754418060945,40.768399727738668],[-73.982038573548124,40.768387823012056],[-73.982268248204349,40.768298621883247],[-73.982384797518051,40.768097213086911],[-73.982320919746599,40.767894461792181],[-73.982155532845766,40.767756204474757],[-73.98238873834039,40.767411004834273],[-73.993650353659021,40.772145571634361],[-73.99415893763998,40.772493009137818],[-73.993831082030937,40.772931787850908],[-73.993891252437052,40.772955194876722],[-73.993962585514595,40.772944653908901],[-73.99401262480508,40.772882846631894],[-73.994122058082397,40.77292405902601],[-73.994136652588594,40.772901870174394],[-73.994301342391154,40.772970028663913],[-73.994281535134448,40.77299380206933],[-73.994376552751078,40.77303955110149],[-73.994294029824005,40.773156243992048],[-73.995023275860802,40.773481196576356],[-73.99508939189289,40.773388475039134],[-73.995013963716758,40.773358035426909],[-73.995050284699261,40.773297153189958],[-73.996240651898916,40.773789791397689],[-73.996195837470992,40.773852356184044],[-73.996098807369748,40.773951805299085],[-73.996179459973888,40.773986954351571],[-73.996095245226442,40.774086186437756],[-73.995572265161172,40.773870731394297],[-73.994017424135961,40.77321375261053],[-73.993935876811335,40.773179512586211],[-73.993861942928888,40.773269531698837],[-73.993822393527211,40.773381758622882],[-73.993767019318497,40.773483981224835],[-73.993698463744295,40.773562141052594],[-73.993358326468751,40.773926888327956],[-73.992622663865575,40.774974056037109],[-73.992577842766124,40.774956016359418],[-73.992527743951555,40.775002110439829],[-73.992469745815342,40.775024159551755],[-73.992403837191887,40.775018140390664],[-73.99226708903538,40.775116033858794],[-73.99217809026365,40.775279293897171],[-73.992059084937338,40.775497598192516],[-73.992125372394938,40.775509075053385],[-73.992226867797001,40.775482211026116],[-73.992329346608813,40.775468900958522],[-73.992361756801131,40.775501899766638],[-73.992386042960277,40.775557180424634],[-73.992087684712729,40.775983970821372],[-73.990927174149746,40.777566878763238],[-73.99039616003671,40.777585065679204],[-73.989461267506471,40.778875124584417],[-73.989175778438053,40.779287524015778],[-73.988868617400072,40.779692922911607],[-73.988871874499793,40.779713738253008],[-73.989219022880576,40.779697895209402],[-73.98927785904425,40.779723439271038],[-73.989409054180143,40.779737706471963],[-73.989498614927044,40.779725044389757],[-73.989596493388234,40.779698146683387],[-73.989679812902509,40.779677568658038],[-73.989752702937935,40.779671244211556],[-73.989842247806507,40.779680752670664],[-73.990040102120489,40.779707677698219],[-73.990137977524839,40.779699769704784],[-73.99033584033225,40.779661794394983],[-73.990430598697046,40.779664973055503],[-73.990622199396725,40.779676064914298],[-73.990745069505479,40.779671328184051],[-73.990872114282197,40.779646007643876],[-73.990961672224358,40.779639683751753],[-73.991057472829539,40.779652352625774],[-73.991157429497036,40.779669775606465],[-73.991242817404469,40.779671367084504],[-73.991255318289745,40.779650782516491],[-73.991294887120119,40.779630209208889],[-73.991321967649895,40.779631796041372],[-73.991359455569423,40.779585883337383],[-73.991551059227476,40.779574821437407],[-73.99141982585985,40.779755280287233],[-73.988886144117032,40.779878898532999],[-73.988939656706265,40.779956178440393],[-73.988926103530844,40.780059292013632],[-73.988911680264692,40.780096037146606],[-73.988919261468567,40.780226094343945],[-73.988381050202634,40.780981074045783],[-73.988232413846987,40.781233144215555],[-73.988210420831663,40.781225482542055],[-73.988140000000143,40.781409000000224],[-73.988041288067166,40.781585961353777],[-73.98810029382463,40.781602878305286],[-73.988076449145055,40.781650935001608],[-73.988018059972219,40.781634188810422],[-73.987960792842145,40.781770987031535],[-73.985465811970457,40.785360700575431],[-73.986172704965611,40.786068452258647],[-73.986455862401996,40.785919219081421],[-73.987072345615601,40.785189638820121],[-73.98711901394276,40.785210319004058],[-73.986497781023601,40.785951202887254],[-73.986164628806279,40.786121882448327],[-73.986128422486075,40.786239001331111],[-73.986071135219746,40.786240706026611],[-73.986027274789123,40.786228964236727],[-73.986097637849426,40.78605822569795],[-73.985429321269592,40.785413942184597],[-73.985081137732209,40.785921935110366],[-73.985198833254501,40.785966552197777],[-73.985170502389906,40.78601333415817],[-73.985216218673656,40.786030501816427],[-73.98525509797993,40.785976205511588],[-73.98524273937646,40.785972572653328],[-73.98524962933017,40.785963139855845],[-73.985281779186749,40.785978620950075],[-73.985240032884533,40.786035858136792],[-73.985683885242182,40.786222123919686],[-73.985717529004575,40.786175994668795],[-73.985765660297687,40.786196274858618],[-73.985682871922691,40.786309786213067],[-73.985636270930442,40.786290150649279],[-73.985670722564691,40.786242911993817],[-73.98520511880038,40.786047669212785],[-73.985211035607492,40.786039554883686],[-73.985162639946992,40.786020999769754],[-73.985131636312062,40.786060297019972],[-73.985016964065125,40.78601423719563],[-73.984655078830457,40.786534741807841],[-73.985743787901043,40.786570082854738],[-73.98589227228328,40.786426529019593],[-73.985942854994988,40.786452847880334],[-73.985949561556794,40.78648711396653],[-73.985812373526713,40.786616865357047],[-73.985135209703174,40.78658761889551],[-73.984619428584324,40.786586016349787],[-73.981952458164173,40.790393724337193],[-73.972823037363767,40.803428052816756],[-73.971036786332192,40.805918478839672],[-73.966701,40.804169000000186],[-73.959647,40.801156000000113],[-73.958508540159471,40.800682279767472],[-73.95853274080838,40.800491362464697],[-73.958357552055688,40.800369095633819]]]}),
        'Upper East Side',   dynamic({"type":"Polygon","coordinates":[[[-73.943592454622546,40.782747908206574],[-73.943648235390199,40.782656161333449],[-73.943870759887162,40.781273026571704],[-73.94345932494096,40.780048275653243],[-73.943213862652243,40.779317588660199],[-73.943004239504688,40.779639495474292],[-73.942716005450905,40.779544169476175],[-73.942712374762181,40.779214856940001],[-73.942535563208608,40.779090956062532],[-73.942893408188027,40.778614093246276],[-73.942438481745029,40.777315235766039],[-73.942244919522594,40.777104088947254],[-73.942074188038887,40.776917846977142],[-73.942002667222781,40.776185317382648],[-73.942620205199006,40.775180871576474],[-73.94285645694552,40.774796600349191],[-73.94293043781397,40.774676268036011],[-73.945870899588215,40.771692257932997],[-73.946618690150586,40.77093339256956],[-73.948664164778933,40.768857624399587],[-73.950069793030679,40.767025088383498],[-73.954418260786071,40.762184104951245],[-73.95650786241211,40.760285256574043],[-73.958787773424007,40.758213471309809],[-73.973015157270069,40.764278692864671],[-73.955760332998182,40.787906554459667],[-73.944023,40.782960000000301],[-73.943592454622546,40.782747908206574]]]}),
    ];
let Coordinates = 
    datatable(longitude:real, latitude:real)
    [
        real(-73.9741), 40.7914, // Upper West Side
        real(-73.9950), 40.7340, // Greenwich Village
        real(-73.9584), 40.7688, // Upper East Side
    ];
let Level = 16;
Polygons
| extend covering = geo_polygon_to_s2cells(polygon, Level) // cover every polygon with s2 cell token array
| mv-expand covering to typeof(string)                     // expand cells array such that every row will have one cell mapped to its polygon
| join kind=inner hint.strategy=broadcast                  // assume that Polygons count is small (In some specific case)
(
    Coordinates
    | extend covering = geo_point_to_s2cell(longitude, latitude, Level) // cover point with cell
) on covering // join on the cell, this filters out rows of point and polygons where the point definitely does not belong to the polygon
| where geo_point_in_polygon(longitude, latitude, polygon) // final filtering for exact result
| project longitude, latitude, description

Output

longitudelatitudedescription
-73.974140.7914Upper West Side
-73.99540.734Greenwich Village
-73.958440.7688Upper East Side

Here is even more improvement on the above query. Count storm events per US state. The below query performs a very efficient join because it doesn’t carry polygons through the join and uses lookup operator

" target="_blank">Run the query

let Level = 6;
let polygons = materialize(
    US_States
    | project StateName = tostring(features.properties.NAME), polygon = features.geometry, id = new_guid());
let tmp = 
    polygons
    | project id, covering = geo_polygon_to_s2cells(polygon, Level) 
    | mv-expand covering to typeof(string)
    | join kind=inner hint.strategy=broadcast
            (
                StormEvents
                | project lng = BeginLon, lat = BeginLat
                | project lng, lat, covering = geo_point_to_s2cell(lng, lat, Level)
            ) on covering
    | project-away covering, covering1;
tmp | lookup polygons on id
| project-away id
| where geo_point_in_polygon(lng, lat, polygon)
| summarize StormEventsCountByState = count() by StateName

Output

StateNameStormEventsCountByState
Florida960
Georgia1085

The following example filters out polygons that don’t intersect with the area of the polygon of interest. The maximum error is diagonal of s2cell length. This example is based on a polygonized earth at night raster file.

let intersection_level_hint = 7;
let area_of_interest = dynamic({"type": "Polygon","coordinates": [[[-73.94966125488281,40.79698248639272],[-73.95841598510742,40.800426144169315],[-73.98124694824219,40.76806170936614],[-73.97283554077148,40.7645513650551],[-73.94966125488281,40.79698248639272]]]});
let area_of_interest_covering = geo_polygon_to_s2cells(area_of_interest, intersection_level_hint);
EarthAtNight
| project value = features.properties.DN, polygon = features.geometry
| extend covering = geo_polygon_to_s2cells(polygon, intersection_level_hint)
| mv-apply c = covering to typeof(string) on
(
    summarize is_intersects = take_anyif(1, array_index_of(area_of_interest_covering, c) != -1)
)
| where is_intersects == 1
| count

Output

Count
83

Count of cells that will be needed in order to cover some polygon with S2 cells of level 5.

let polygon = dynamic({"type":"Polygon","coordinates":[[[0,0],[0,50],[100,50],[0,0]]]});
print s2_cell_token_count = array_length(geo_polygon_to_s2cells(polygon, 5));

Output

s2_cell_token_count
286

Covering a large-area polygon with small-area cells returns null.

let polygon = dynamic({"type":"Polygon","coordinates":[[[0,0],[0,50],[100,50],[0,0]]]});
print geo_polygon_to_s2cells(polygon, 30);

Output

print_0

Covering a large-area polygon with small-area cells returns null.

let polygon = dynamic({"type":"Polygon","coordinates":[[[0,0],[0,50],[100,50],[0,0]]]});
print isnull(geo_polygon_to_s2cells(polygon, 30));

Output

print_0
1

42 - geo_s2cell_neighbors()

Learn how to use the geo_s2cell_neighbors() function to calculate S2 cell neighbors.

Calculates S2 cell neighbors.

Read more about S2 cell hierarchy.

Syntax

geo_s2cell_neighbors(s2cell)

Parameters

NameTypeRequiredDescription
s2cellstring✔️S2 cell token value as it was calculated by geo_point_to_s2cell(). The S2 cell token maximum string length is 16 characters.

Returns

An array of S2 cell neighbors. If the S2 Cell is invalid, the query produces a null result.

Examples

The following example calculates S2 cell neighbors.

print neighbors = geo_s2cell_neighbors('89c259')

Output

neighbors
[“89c25d”,“89c2f9”,“89c251”,“89c257”,“89c25f”,“89c25b”,“89c2f7”,“89c2f5”]

The following example calculates an array of input S2 cell with its neighbors.

let s2cell = '89c259';
print cells = array_concat(pack_array(s2cell), geo_s2cell_neighbors(s2cell))

Output

cells
[“89c259”,“89c25d”,“89c2f9”,“89c251”,“89c257”,“89c25f”,“89c25b”,“89c2f7”,“89c2f5”]

The following example calculates S2 cells polygons GeoJSON geometry collection.

let s2cell = '89c259';
print cells = array_concat(pack_array(s2cell), geo_s2cell_neighbors(s2cell))
| mv-expand cells to typeof(string)
| project polygons = geo_s2cell_to_polygon(cells)
| summarize arr = make_list(polygons)
| project geojson = bag_pack("type", "Feature","geometry", bag_pack("type", "GeometryCollection", "geometries", arr), "properties", bag_pack("name", "polygons"))

Output

geojson
{“type”: “Feature”,“geometry”: {“type”: “GeometryCollection”,“geometries”: [
{“type”: “Polygon”,“coordinates”: [[[ -74.030012249838478, 40.8012684339439],[ -74.030012249838478, 40.7222262918358],[ -73.935982114337421, 40.708880489804564],[ -73.935982114337421, 40.787917134506841],[ -74.030012249838478, 40.8012684339439]]]},
{“type”: “Polygon”,“coordinates”: [[[ -73.935982114337421, 40.708880489804564],[ -73.935982114337421, 40.629736433321796],[ -73.841906340776248, 40.616308079144915],[ -73.841906340776248, 40.695446474556284],[ -73.935982114337421, 40.708880489804564]]]},
{“type”: “Polygon”,“coordinates”: [[[ -74.1239959854733, 40.893471289549765],[ -74.1239959854733, 40.814531536204242],[ -74.030012249838478, 40.8012684339439],[ -74.030012249838478, 40.880202851376716],[ -74.1239959854733, 40.893471289549765]]]},
{“type”: “Polygon”,“coordinates”: [[[ -74.1239959854733, 40.735483949993387],[ -74.1239959854733, 40.656328734184143],[ -74.030012249838478, 40.643076628676461],[ -74.030012249838478, 40.7222262918358],[ -74.1239959854733, 40.735483949993387]]]},
{“type”: “Polygon”,“coordinates”: [[[ -74.1239959854733, 40.814531536204242],[ -74.1239959854733, 40.735483949993387],[ -74.030012249838478, 40.7222262918358],[ -74.030012249838478, 40.8012684339439],[ -74.1239959854733, 40.814531536204242]]]},
{“type”: “Polygon”,“coordinates”: [[[ -73.935982114337421, 40.787917134506841],[ -73.935982114337421, 40.708880489804564],[ -73.841906340776248, 40.695446474556284],[ -73.841906340776248, 40.774477568182071],[ -73.935982114337421, 40.787917134506841]]]},
{“type”: “Polygon”,“coordinates”: [[[ -74.030012249838478, 40.7222262918358],[ -74.030012249838478, 40.643076628676461],[ -73.935982114337421, 40.629736433321796],[ -73.935982114337421, 40.708880489804564],[ -74.030012249838478, 40.7222262918358]]]},
{“type”: “Polygon”,“coordinates”: [[[ -74.030012249838478, 40.880202851376716],[ -74.030012249838478, 40.8012684339439],[ -73.935982114337421, 40.787917134506841],[ -73.935982114337421, 40.866846163445771],[ -74.030012249838478, 40.880202851376716]]]},
{“type”: “Polygon”,“coordinates”: [[[ -73.935982114337421, 40.866846163445771],[ -73.935982114337421, 40.787917134506841],[ -73.841906340776248, 40.774477568182071],[ -73.841906340776248, 40.853401155678846],[ -73.935982114337421, 40.866846163445771]]]}]},
“properties”: {“name”: “polygons”}}

The following example calculates polygon unions that represent S2 cell and its neighbors.

let s2cell = '89c259';
print cells = array_concat(pack_array(s2cell), geo_s2cell_neighbors(s2cell))
| mv-expand cells to typeof(string)
| project polygons = geo_s2cell_to_polygon(cells)
| summarize arr = make_list(polygons)
| project polygon = geo_union_polygons_array(arr)

Output

polygon
{“type”: “Polygon”,“coordinates”: [[[-73.841906340776248,40.695446474556284],[-73.841906340776248,40.774477568182071],[-73.841906340776248,40.853401155678846],[-73.935982114337421,40.866846163445771],[-74.030012249838478,40.880202851376716],[-74.1239959854733,40.893471289549758],[-74.1239959854733,40.814531536204242],[-74.1239959854733,40.735483949993387],[-74.1239959854733,40.656328734184143],[-74.030012249838478,40.643076628676461],[-73.935982114337421,40.629736433321796],[-73.841906340776248,40.616308079144915],[-73.841906340776248,40.695446474556284]]]}

The following example returns true because of the invalid S2 Cell token input.

print invalid = isnull(geo_s2cell_neighbors('a'))

Output

invalid
1

43 - geo_s2cell_to_central_point()

Learn how to use the geo_s2cell_to_central_point() function to calculate the geospatial coordinates that represent the center of an S2 cell.

Calculates the geospatial coordinates that represent the center of an S2 cell.

Read more about S2 cell hierarchy.

Syntax

geo_s2cell_to_central_point(s2cell)

Parameters

NameTypeRequiredDescription
s2cellstring✔️S2 cell token value as it was calculated by geo_point_to_s2cell(). The S2 cell token maximum string length is 16 characters.

Returns

The geospatial coordinate values in GeoJSON Format and of a dynamic data type. If the S2 cell token is invalid, the query will produce a null result.

Examples

print point = geo_s2cell_to_central_point("1234567")
| extend coordinates = point.coordinates
| extend longitude = coordinates[0], latitude = coordinates[1]

Output

pointcoordinateslongitudelatitude
{
“type”: “Point”,
“coordinates”: [
9.86830731850408,
27.468392925827604
]
}
[
9.86830731850408,
27.468392925827604
]
9.8683073185040827.4683929258276

The following example returns a null result because of the invalid S2 cell token input.

print point = geo_s2cell_to_central_point("a")

Output

point

44 - geo_s2cell_to_polygon()

Learn how to use the geo_s2cell_to_polygon() function to calculate the polygon that represents the S2 Cell rectangular area.

Calculates the polygon that represents the S2 Cell rectangular area.

Read more about S2 Cells.

Syntax

geo_s2cell_to_polygon(s2cell)

Parameters

NameTypeRequiredDescription
s2cellstring✔️S2 cell token value as it was calculated by geo_point_to_s2cell(). The S2 cell token maximum string length is 16 characters.

Returns

Polygon in GeoJSON Format and of a dynamic data type. If the s2cell is invalid, the query produces a null result.

Examples

print s2cellPolygon = geo_s2cell_to_polygon("89c259")

Output

s2cellPolygon
{
“type”: “Polygon”,
“coordinates”: [[[-74.030012249838478, 40.8012684339439], [-74.030012249838478, 40.7222262918358], [-73.935982114337421, 40.708880489804564], [-73.935982114337421, 40.787917134506841], [-74.030012249838478, 40.8012684339439]]]
}

The following example assembles GeoJSON geometry collection of S2 Cell polygons.

datatable(lng:real, lat:real)
[
    -73.956683, 40.807907,
    -73.916869, 40.818314,
    -73.989148, 40.743273,
]
| project s2_hash = geo_point_to_s2cell(lng, lat, 10)
| project s2_hash_polygon = geo_s2cell_to_polygon(s2_hash)
| summarize s2_hash_polygon_lst = make_list(s2_hash_polygon)
| project bag_pack(
    "type", "Feature",
    "geometry", bag_pack("type", "GeometryCollection", "geometries", s2_hash_polygon_lst),
    "properties", bag_pack("name", "S2 Cell polygons collection"))

Output

Column1
{
“type”: “Feature”,
“geometry”: {“type”: “GeometryCollection”, “geometries”: [
{“type”: “Polygon”, “coordinates”: [[[-74.030012249838478, 40.880202851376716], [-74.030012249838478, 40.8012684339439], [-73.935982114337421, 40.787917134506841], [-73.935982114337421, 40.866846163445771], [-74.030012249838478, 40.880202851376716]]]},
{“type”: “Polygon”, “coordinates”: [[[-73.935982114337421, 40.866846163445771], [-73.935982114337421, 40.787917134506841], [-73.841906340776248, 40.774477568182071], [-73.841906340776248, 40.853401155678846], [-73.935982114337421, 40.866846163445771]]]},
{“type”: “Polygon”, “coordinates”: [[[-74.030012249838478, 40.8012684339439], [-74.030012249838478, 40.7222262918358], [-73.935982114337421, 40.708880489804564], [-73.935982114337421, 40.787917134506841], [-74.030012249838478, 40.8012684339439]]]}]
},
“properties”: {“name”: “S2 Cell polygons collection”}
}

The following example returns a null result because of the invalid s2cell token input.

print s2cellPolygon = geo_s2cell_to_polygon("a")

Output

s2cellPolygon

45 - geo_simplify_polygons_array()

Learn how to use the geo_simplify_polygons_array() function to simplify polygons by replacing nearly straight chains of short edges with a single long edge on Earth.

Simplifies polygons by replacing nearly straight chains of short edges with a single long edge on Earth.

Syntax

geo_simplify_polygons_array(polygons, tolerance)

Parameters

NameTypeRequiredDescription
polygondynamic✔️Polygon or multipolygon in the GeoJSON format.
toleranceint, long, or realDefines minimum distance in meters between any two vertices. Supported values are in the range [0, ~7,800,000 meters]. If unspecified, the default value 10 is used.

Returns

Simplified polygon or a multipolygon in the GeoJSON format and of a dynamic data type, with no two vertices with distance less than tolerance. If either the polygon or tolerance is invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.

Examples

The following example simplifies polygons with mutual borders (USA states), by removing vertices that are within a 100-meter distance from each other.

US_States
| project polygon = features.geometry
| summarize lst = make_list(polygon)
| project polygons = geo_simplify_polygons_array(lst, 100)

Output

polygons
{ “type”: “MultiPolygon”, “coordinates”: [ … ]]}

The following example returns True because one of the polygons is invalid.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.97335,40.77274],[-73.9936,40.76630],[-73.97171,40.75655],[-73.97335,40.77274]]]})
]
| summarize arr = make_list(polygons)
| project is_invalid_polygon = isnull(geo_simplify_polygons_array(arr))

Output

is_invalid_polygon
1

The following example returns True because of the invalid tolerance.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.97335,40.77274],[-73.9936,40.76630],[-73.97171,40.75655],[-73.97335,40.77274]]]})
]
| summarize arr = make_list(polygons)
| project is_null = isnull(geo_simplify_polygons_array(arr, -1))

Output

is_null
1

The following example returns True because high tolerance causes polygon to disappear.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.97335,40.77274],[-73.9936,40.76630],[-73.97171,40.75655],[-73.97335,40.77274]]]})
]
| summarize arr = make_list(polygons)
| project is_null = isnull(geo_simplify_polygons_array(arr, 10000))

Output

is_null
1

46 - geo_union_lines_array()

Learn how to use the geo_union_lines_array() function to calculate the union of line strings or multiline strings on Earth.

Calculates the union of lines or multilines on Earth.

Syntax

geo_union_lines_array(lineStrings)

Parameters

NameTypeRequiredDescription
lineStringsdynamic✔️An array of lines or multilines in the GeoJSON format.

Returns

A line or a multiline in GeoJSON Format and of a dynamic data type. If any of the provided lines or multilines is invalid, the query will produce a null result.

LineString definition and constraints

dynamic({“type”: “LineString”,“coordinates”: [[lng_1,lat_1], [lng_2,lat_2], …, [lng_N,lat_N]]})

dynamic({“type”: “MultiLineString”,“coordinates”: [[line_1, line_2, …, line_N]]})

  • LineString coordinates array must contain at least two entries.
  • Coordinates [longitude, latitude] must be valid where longitude is a real number in the range [-180, +180] and latitude is a real number in the range [-90, +90].
  • Edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.

Examples

The following example performs geospatial union on line rows.

datatable(lines:dynamic)
[
    dynamic({"type":"LineString","coordinates":[[-73.95683884620665,40.80502891480884],[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311]]}),
    dynamic({"type":"LineString","coordinates":[[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311],[-73.95537436008453,40.804413741624515]]}),
    dynamic({"type":"LineString","coordinates":[[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311]]})
]
| summarize lines_arr = make_list(lines)
| project lines_union = geo_union_lines_array(lines_arr)

Output

lines_union
{“type”: “LineString”, “coordinates”: [[-73.956838846206651, 40.805028914808844], [-73.95633727312088, 40.8057171711177], [ -73.954891562461853, 40.80510200431312], [-73.955374360084534, 40.804413741624522]]}

The following example performs geospatial union on line columns.

datatable(line1:dynamic, line2:dynamic)
[
    dynamic({"type":"LineString","coordinates":[[-73.95683884620665,40.80502891480884],[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311]]}), dynamic({"type":"LineString","coordinates":[[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311],[-73.95537436008453,40.804413741624515]]})
]
| project lines_arr = pack_array(line1, line2)
| project lines_union = geo_union_lines_array(lines_arr)

Output

lines_union
{“type”: “LineString”, “coordinates”:[[-73.956838846206651, 40.805028914808844], [-73.95633727312088, 40.8057171711177], [-73.954891562461853, 40.80510200431312], [-73.955374360084534, 40.804413741624522]]}

The following example returns True because one of the lines is invalid.

datatable(lines:dynamic)
[
    dynamic({"type":"LineString","coordinates":[[-73.95683884620665,40.80502891480884],[-73.95633727312088,40.8057171711177],[-73.95489156246185,40.80510200431311]]}),
    dynamic({"type":"LineString","coordinates":[[1, 1]]})
]
| summarize lines_arr = make_list(lines)
| project invalid_union = isnull(geo_union_lines_array(lines_arr))

Output

invalid_union
True

47 - geo_union_polygons_array()

Learn how to use the geo_union_polygons_array() function to calculate the union of polygons or multipolygons on Earth.

Calculates the union of polygons or multipolygons on Earth.

Syntax

geo_union_polygons_array(polygons)

Parameters

NameTypeRequiredDescription
polygonsdynamic✔️An array of polygons or multipolygons in the GeoJSON format.

Returns

A polygon or a multipolygon in GeoJSON Format and of a dynamic data type. If any of the provided polygons or multipolygons is invalid, the query will produce a null result.

Polygon definition and constraints

dynamic({“type”: “Polygon”,“coordinates”: [ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N ]})

dynamic({“type”: “MultiPolygon”,“coordinates”: [[ LinearRingShell, LinearRingHole_1, …, LinearRingHole_N], …, [LinearRingShell, LinearRingHole_1, …, LinearRingHole_M]]})

  • LinearRingShell is required and defined as a counterclockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be only one shell.
  • LinearRingHole is optional and defined as a clockwise ordered array of coordinates [[lng_1,lat_1],…,[lng_i,lat_i],…,[lng_j,lat_j],…,[lng_1,lat_1]]. There can be any number of interior rings and holes.
  • LinearRing vertices must be distinct with at least three coordinates. The first coordinate must be equal to the last. At least four entries are required.
  • Coordinates [longitude, latitude] must be valid. Longitude must be a real number in the range [-180, +180] and latitude must be a real number in the range [-90, +90].
  • LinearRingShell encloses at most half of the sphere. LinearRing divides the sphere into two regions. The smaller of the two regions will be chosen.
  • LinearRing edge length must be less than 180 degrees. The shortest edge between the two vertices will be chosen.
  • LinearRings must not cross and must not share edges. LinearRings may share vertices.

Examples

The following example performs geospatial union on polygon rows.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.97335,40.77274],[-73.9936,40.76630],[-73.97171,40.75655],[-73.97335,40.77274]]]})
]
| summarize polygons_arr = make_list(polygons)
| project polygons_union = geo_union_polygons_array(polygons_arr)

Output

polygons_union
{“type”:“Polygon”,“coordinates”:[[[-73.972599326729608,40.765330371902991],[-73.960302383706178,40.782140794645024],[-73.9577,40.7789],[-73.94622,40.79249],[-73.9526593223173,40.792584227716468],[-73.9495,40.7969],[-73.95807,40.80068],[-73.9639277517478,40.792748258673875],[-73.96888,40.792819999999992],[-73.9662719791645,40.7895734224338],[-73.9803360309571,40.770518810606404],[-73.9936,40.7663],[-73.97171,40.756550000000004],[-73.972599326729608,40.765330371902991]]]}

The following example performs geospatial union on polygon columns.

datatable(polygon1:dynamic, polygon2:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}), dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249],[-73.96888,40.79282],[-73.9577,40.7789],[-73.94622,40.79249]]]})
]
| project polygons_arr = pack_array(polygon1, polygon2)
| project polygons_union = geo_union_polygons_array(polygons_arr)

Output

polygons_union
{“type”:“Polygon”,“coordinates”:[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.9639277517478,40.792748258673875],[-73.96888,40.792819999999992],[-73.9662719791645,40.7895734224338],[-73.98201,40.76825],[-73.97317,40.76455],[-73.960302383706178,40.782140794645024],[-73.9577,40.7789],[-73.94622,40.79249],[-73.9526593223173,40.792584227716468],[-73.9495,40.7969]]]}

The following example returns True because one of the polygons is invalid.

datatable(polygons:dynamic)
[
    dynamic({"type":"Polygon","coordinates":[[[-73.9495,40.7969],[-73.95807,40.80068],[-73.98201,40.76825],[-73.97317,40.76455],[-73.9495,40.7969]]]}),
    dynamic({"type":"Polygon","coordinates":[[[-73.94622,40.79249]]]})
]
| summarize polygons_arr = make_list(polygons)
| project invalid_union = isnull(geo_union_polygons_array(polygons_arr))

Output

invalid_union
True

48 - Geospatial data visualizations

Learn how to visualize geospatial data.

Geospatial data can be visualized as part of your query using the render operator as points, pies, or bubbles on a map.

Visualize points on a map

You can visualize points either using [Longitude, Latitude] columns, or GeoJSON column. Using a series column is optional. The [Longitude, Latitude] pair defines each point, in that order.

Example: Visualize points on a map

The following example finds storm events and visualizes 100 on a map.

StormEvents
| take 100
| project BeginLon, BeginLat
| render scatterchart with (kind = map)

Screenshot of sample storm events on a map.

Example: Visualize multiple series of points on a map

The following example visualizes multiple series of points, where the [Longitude, Latitude] pair defines each point, and a third column defines the series. In this example, the series is EventType.

StormEvents
| take 100
| project BeginLon, BeginLat, EventType
| render scatterchart with (kind = map)

Screenshot of sample storm series events on a map.

Example: Visualize series of points on data with multiple columns

The following example visualizes a series of points on a map. If you have multiple columns in the result, you must specify the columns to be used for xcolumn (Longitude), ycolumn (Latitude), and series.

StormEvents
| take 100
| render scatterchart with (kind = map, xcolumn = BeginLon, ycolumns = BeginLat, series = EventType)

Screenshot of sample storm series events using arguments.

Example: Visualize points on a map defined by GeoJSON dynamic values

The following example visualizes points on the map using GeoJSON dynamic values to define the points.

StormEvents
| project BeginLon, BeginLat
| summarize by hash=geo_point_to_s2cell(BeginLon, BeginLat, 5)
| project geo_s2cell_to_central_point(hash)
| render scatterchart with (kind = map)

Screenshot of sample storm GeoJSON events.

Visualization of pies or bubbles on a map

You can visualize pies or bubbles either using [Longitude, Latitude] columns, or GeoJSON column. These visualizations can be created with color or numeric axes.

Example: Visualize pie charts by location

The following example shows storm events aggregated by S2 cells. The chart aggregates events in bubbles by location in one color.

StormEvents
| project BeginLon, BeginLat, EventType
| where geo_point_in_circle(BeginLon, BeginLat, real(-81.3891), 28.5346, 1000 * 100)
| summarize count() by EventType, hash = geo_point_to_s2cell(BeginLon, BeginLat)
| project geo_s2cell_to_central_point(hash), count_
| extend Events = "count"
| render piechart with (kind = map)

Screenshot of storm events on a bubble map.

Example: Visualize bubbles using a color axis

The following example shows storm events aggregated by S2 cells. The chart aggregates events by event type in pie charts by location.

StormEvents
| project BeginLon, BeginLat, EventType
| where geo_point_in_circle(BeginLon, BeginLat, real(-81.3891), 28.5346, 1000 * 100)
| summarize count() by EventType, hash = geo_point_to_s2cell(BeginLon, BeginLat)
| project geo_s2cell_to_central_point(hash), EventType, count_
| render piechart with (kind = map)

Screenshot of storm events on a pie map in Kusto.Explorer.

49 - Geospatial grid system

Learn how to use geospatial grid systems to cluster geospatial data.

Geospatial data can be analyzed efficiently using grid systems to create geospatial clusters. You can use geospatial tools to aggregate, cluster, partition, reduce, join, and index geospatial data. These tools improve query runtime performance, reduce stored data size, and visualize aggregated geospatial data.

The following methods of geospatial clustering are supported:

The core functionalities of these methods are:

  • Calculate hash\index\cell token of geospatial coordinate. Different geospatial coordinates that belong to same cell will have same cell token value.
  • Calculate center point of hash\index\cell token. This point is useful because it may represent all the values in the cell.
  • Calculate cell polygon. Calculating cell polygons is useful in cell visualization or other calculations, for example, distance, or point in polygon checks.

Compare methods

CriteriaGeohashS2 CellH3 Cell
Levels of hierarchy183116
Cell shapeRectangleRectangleHexagon
Cell edgesstraightgeodesicstraight
Projection systemNone. Encodes latitude and longitude.Cube face centered quadratic transform.Icosahedron face centered gnomonic.
Neighbors count886
Noticeable featureCommon prefixes indicate points proximity.31 hierarchy levels.Cell shape is hexagonal.
PerformanceSuperbSuperbFast
Cover polygon with cellsNot supportedSupportedNot supported
Cell parentNot supportedNot SupportedSupported
Cell childrenNot supportedNot SupportedSupported
Cell ringsNot supportedNot SupportedSupported

Geohash functions

Function Name
geo_point_to_geohash()
geo_geohash_to_central_point()
geo_geohash_neighbors()
geo_geohash_to_polygon()

S2 Cell functions

Function Name
geo_point_to_s2cell()
geo_s2cell_to_central_point()
geo_s2cell_neighbors()
geo_s2cell_to_polygon()
geo_polygon_to_s2cells()

H3 Cell functions

Function Name
geo_point_to_h3cell()
geo_h3cell_to_central_point()
geo_h3cell_neighbors()
geo_h3cell_to_polygon()
geo_h3cell_parent()
geo_h3cell_children()
geo_h3cell_rings()