1 - dcount_intersect plugin

Learn how to use the dcount_intersect plugin to calculate the intersection between N sets based on hyper log log (hll) values.

Calculates intersection between N sets based on hll values (N in range of [2..16]), and returns N dcount values. The plugin is invoked with the evaluate operator.

Syntax

T | evaluate dcount_intersect(hll_1, hll_2, [, hll_3, …])

Parameters

NameTypeRequiredDescription
Tstring✔️The input tabular expression.
hll_iThe values of set Si calculated with the hll() function.

Returns

Returns a table with N dcount values (per column, representing set intersections). Column names are s0, s1, … (until n-1).

Given sets S1, S2, .. Sn return values will be representing distinct counts of:
S1,
S1 ∩ S2,
S1 ∩ S2 ∩ S3,
… ,
S1 ∩ S2 ∩ … ∩ Sn

Examples

// Generate numbers from 1 to 100
range x from 1 to 100 step 1
| extend isEven = (x % 2 == 0), isMod3 = (x % 3 == 0), isMod5 = (x % 5 == 0)
// Calculate conditional HLL values (note that '0' is included in each of them as additional value, so we will subtract it later)
| summarize hll_even = hll(iif(isEven, x, 0), 2),
            hll_mod3 = hll(iif(isMod3, x, 0), 2),
            hll_mod5 = hll(iif(isMod5, x, 0), 2) 
// Invoke the plugin that calculates dcount intersections         
| evaluate dcount_intersect(hll_even, hll_mod3, hll_mod5)
| project evenNumbers = s0 - 1,             //                             100 / 2 = 50
          even_and_mod3 = s1 - 1,           // gcd(2,3) = 6, therefor:     100 / 6 = 16
          even_and_mod3_and_mod5 = s2 - 1   // gcd(2,3,5) is 30, therefore: 100 / 30 = 3 

Output

evenNumberseven_and_mod3even_and_mod3_and_mod5
50163

2 - infer_storage_schema plugin

Learn how to use the infer_storage_schema plugin to infer the schema of external data.

This plugin infers the schema of external data, and returns it as CSL schema string. The string can be used when creating external tables. The plugin is invoked with the evaluate operator.

Authentication and authorization

In the properties of the request, you specify storage connection strings to access. Each storage connection string specifies the authorization method to use for access to the storage. Depending on the authorization method, the principal may need to be granted permissions on the external storage to perform the schema inference.

The following table lists the supported authentication methods and any required permissions by storage type.

Authentication methodAzure Blob Storage / Data Lake Storage Gen2Data Lake Storage Gen1
ImpersonationStorage Blob Data ReaderReader
Shared Access (SAS) tokenList + ReadThis authentication method isn’t supported in Gen1.
Microsoft Entra access token
Storage account access keyThis authentication method isn’t supported in Gen1.

Syntax

evaluate infer_storage_schema( Options )

Parameters

NameTypeRequiredDescription
Optionsdynamic✔️A property bag specifying the properties of the request.

Supported properties of the request

NameTypeRequiredDescription
StorageContainersdynamic✔️An array of storage connection strings that represent prefix URI for stored data artifacts.
DataFormatstring✔️One of the supported data formats.
FileExtensionstringIf specified, the function only scans files ending with this file extension. Specifying the extension may speed up the process or eliminate data reading issues.
FileNamePrefixstringIf specified, the function only scans files starting with this prefix. Specifying the prefix may speed up the process.
ModestringThe schema inference strategy. A value of: any, last, all. The function infers the data schema from the first found file, from the last written file, or from all files respectively. The default value is last.
InferenceOptionsdynamicMore inference options. Valid options: UseFirstRowAsHeader for delimited file formats. For example, 'InferenceOptions': {'UseFirstRowAsHeader': true} .

Returns

The infer_storage_schema plugin returns a single result table containing a single row/column containing CSL schema string.

Example

let options = dynamic({
  'StorageContainers': [
    h@'https://storageaccount.blob.core.windows.net/MobileEvents;secretKey'
  ],
  'FileExtension': '.parquet',
  'FileNamePrefix': 'part-',
  'DataFormat': 'parquet'
});
evaluate infer_storage_schema(options)

Output

CslSchema
app_id:string, user_id:long, event_time:datetime, country:string, city:string, device_type:string, device_vendor:string, ad_network:string, campaign:string, site_id:string, event_type:string, event_name:string, organic:string, days_from_install:int, revenue:real

Use the returned schema in external table definition:

.create external table MobileEvents(
    app_id:string, user_id:long, event_time:datetime, country:string, city:string, device_type:string, device_vendor:string, ad_network:string, campaign:string, site_id:string, event_type:string, event_name:string, organic:string, days_from_install:int, revenue:real
)
kind=blob
partition by (dt:datetime = bin(event_time, 1d), app:string = app_id)
pathformat = ('app=' app '/dt=' datetime_pattern('yyyyMMdd', dt))
dataformat = parquet
(
    h@'https://storageaccount.blob.core.windows.net/MovileEvents;secretKey'
)

3 - infer_storage_schema_with_suggestions plugin

Learn how to use the infer_storage_schema_with_suggestions plugin to infer the optimal schema of external data.

This infer_storage_schema_with_suggestions plugin infers the schema of external data and returns a JSON object. For each column, the object provides inferred type, a recommended type, and the recommended mapping transformation. The recommended type and mapping are provided by the suggestion logic that determines the optimal type using the following logic:

  • Identity columns: If the inferred type for a column is long and the column name ends with id, the suggested type is string since it provides optimized indexing for identity columns where equality filters are common.
  • Unix datetime columns: If the inferred type for a column is long and one of the unix-time to datetime mapping transformations produces a valid datetime value, the suggested type is datetime and the suggested ApplicableTransformationMapping mapping is the one that produced a valid datetime value.

The plugin is invoked with the evaluate operator. To obtain the table schema that uses the inferred schema for Create and alter Azure Storage external tables without suggestions, use the infer_storage_schema plugin.

Authentication and authorization

In the properties of the request, you specify storage connection strings to access. Each storage connection string specifies the authorization method to use for access to the storage. Depending on the authorization method, the principal may need to be granted permissions on the external storage to perform the schema inference.

The following table lists the supported authentication methods and any required permissions by storage type.

Authentication methodAzure Blob Storage / Data Lake Storage Gen2Data Lake Storage Gen1
ImpersonationStorage Blob Data ReaderReader
Shared Access (SAS) tokenList + ReadThis authentication method isn’t supported in Gen1.
Microsoft Entra access token
Storage account access keyThis authentication method isn’t supported in Gen1.

Syntax

evaluate infer_storage_schema_with_suggestions( Options )

Parameters

NameTypeRequiredDescription
Optionsdynamic✔️A property bag specifying the properties of the request.

Supported properties of the request

NameTypeRequiredDescription
StorageContainersdynamic✔️An array of storage connection strings that represent prefix URI for stored data artifacts.
DataFormatstring✔️One of the supported Data formats supported for ingestion
FileExtensionstringIf specified, the function only scans files ending with this file extension. Specifying the extension may speed up the process or eliminate data reading issues.
FileNamePrefixstringIf specified, the function only scans files starting with this prefix. Specifying the prefix may speed up the process.
ModestringThe schema inference strategy. A value of: any, last, all. The function infers the data schema from the first found file, from the last written file, or from all files respectively. The default value is last.
InferenceOptionsdynamicMore inference options. Valid options: UseFirstRowAsHeader for delimited file formats. For example, 'InferenceOptions': {'UseFirstRowAsHeader': true} .

Returns

The infer_storage_schema_with_suggestions plugin returns a single result table containing a single row/column containing a JSON string.

Example

let options = dynamic({
  'StorageContainers': [
    h@'https://storageaccount.blob.core.windows.net/MobileEvents;secretKey'
  ],
  'FileExtension': '.json',
  'FileNamePrefix': 'js-',
  'DataFormat': 'json'
});
evaluate infer_storage_schema_with_suggestions(options)

Example input data

    {
        "source": "DataExplorer",
        "created_at": "2022-04-10 15:47:57",
        "author_id": 739144091473215488,
        "time_millisec":1547083647000
    }

Output

{
  "Columns": [
    {
      "OriginalColumn": {
        "Name": "source",
        "CslType": {
          "type": "string",
          "IsNumeric": false,
          "IsSummable": false
        }
      },
      "RecommendedColumn": {
        "Name": "source",
        "CslType": {
          "type": "string",
          "IsNumeric": false,
          "IsSummable": false
        }
      },
      "ApplicableTransformationMapping": "None"
    },
    {
      "OriginalColumn": {
        "Name": "created_at",
        "CslType": {
          "type": "datetime",
          "IsNumeric": false,
          "IsSummable": true
        }
      },
      "RecommendedColumn": {
        "Name": "created_at",
        "CslType": {
          "type": "datetime",
          "IsNumeric": false,
          "IsSummable": true
        }
      },
      "ApplicableTransformationMapping": "None"
    },
    {
      "OriginalColumn": {
        "Name": "author_id",
        "CslType": {
          "type": "long",
          "IsNumeric": true,
          "IsSummable": true
        }
      },
      "RecommendedColumn": {
        "Name": "author_id",
        "CslType": {
          "type": "string",
          "IsNumeric": false,
          "IsSummable": false
        }
      },
      "ApplicableTransformationMapping": "None"
    },
    {
      "OriginalColumn": {
        "Name": "time_millisec",
        "CslType": {
          "type": "long",
          "IsNumeric": true,
          "IsSummable": true
        }
      },
      "RecommendedColumn": {
        "Name": "time_millisec",
        "CslType": {
          "type": "datetime",
          "IsNumeric": false,
          "IsSummable": true
        }
      },
      "ApplicableTransformationMapping": "DateTimeFromUnixMilliseconds"
    }
  ]
}

4 - ipv4_lookup plugin

Learn how to use the ipv4_lookup plugin to look up an IPv4 value in a lookup table.

The ipv4_lookup plugin looks up an IPv4 value in a lookup table and returns rows with matched values. The plugin is invoked with the evaluate operator.

Syntax

T | evaluate ipv4_lookup( LookupTable , SourceIPv4Key , IPv4LookupKey [, ExtraKey1 [.. , ExtraKeyN [, return_unmatched ]]] )

Parameters

NameTypeRequiredDescription
Tstring✔️The tabular input whose column SourceIPv4Key is used for IPv4 matching.
LookupTablestring✔️Table or tabular expression with IPv4 lookup data, whose column LookupKey is used for IPv4 matching. IPv4 values can be masked using IP-prefix notation.
SourceIPv4Keystring✔️The column of T with IPv4 string to be looked up in LookupTable. IPv4 values can be masked using IP-prefix notation.
IPv4LookupKeystring✔️The column of LookupTable with IPv4 string that is matched against each SourceIPv4Key value.
ExtraKey1 .. ExtraKeyNstringAdditional column references that are used for lookup matches. Similar to join operation: records with equal values are considered matching. Column name references must exist both is source table T and LookupTable.
return_unmatchedboolA boolean flag that defines if the result should include all or only matching rows (default: false - only matching rows returned).

Returns

The ipv4_lookup plugin returns a result of join (lookup) based on IPv4 key. The schema of the table is the union of the source table and the lookup table, similar to the result of the lookup operator.

If the return_unmatched argument is set to true, the resulting table includes both matched and unmatched rows (filled with nulls).

If the return_unmatched argument is set to false, or omitted (the default value of false is used), the resulting table has as many records as matching results. This variant of lookup has better performance compared to return_unmatched=true execution.

Examples

IPv4 lookup - matching rows only

// IP lookup table: IP_Data
// Partial data from: https://raw.githubusercontent.com/datasets/geoip2-ipv4/master/data/geoip2-ipv4.csv
let IP_Data = datatable(network:string, continent_code:string ,continent_name:string, country_iso_code:string, country_name:string)
[
  "111.68.128.0/17","AS","Asia","JP","Japan",
  "5.8.0.0/19","EU","Europe","RU","Russia",
  "223.255.254.0/24","AS","Asia","SG","Singapore",
  "46.36.200.51/32","OC","Oceania","CK","Cook Islands",
  "2.20.183.0/24","EU","Europe","GB","United Kingdom",
];
let IPs = datatable(ip:string)
[
  '2.20.183.12',   // United Kingdom
  '5.8.1.2',       // Russia
  '192.165.12.17', // Unknown
];
IPs
| evaluate ipv4_lookup(IP_Data, ip, network)

Output

ipnetworkcontinent_codecontinent_namecountry_iso_codecountry_name
2.20.183.122.20.183.0/24EUEuropeGBUnited Kingdom
5.8.1.25.8.0.0/19EUEuropeRURussia

IPv4 lookup - return both matching and nonmatching rows

// IP lookup table: IP_Data
// Partial data from: 
// https://raw.githubusercontent.com/datasets/geoip2-ipv4/master/data/geoip2-ipv4.csv
let IP_Data = datatable(network:string,continent_code:string ,continent_name:string ,country_iso_code:string ,country_name:string )
[
    "111.68.128.0/17","AS","Asia","JP","Japan",
    "5.8.0.0/19","EU","Europe","RU","Russia",
    "223.255.254.0/24","AS","Asia","SG","Singapore",
    "46.36.200.51/32","OC","Oceania","CK","Cook Islands",
    "2.20.183.0/24","EU","Europe","GB","United Kingdom",
];
let IPs = datatable(ip:string)
[
    '2.20.183.12',   // United Kingdom
    '5.8.1.2',       // Russia
    '192.165.12.17', // Unknown
];
IPs
| evaluate ipv4_lookup(IP_Data, ip, network, return_unmatched = true)

Output

ipnetworkcontinent_codecontinent_namecountry_iso_codecountry_name
2.20.183.122.20.183.0/24EUEuropeGBUnited Kingdom
5.8.1.25.8.0.0/19EUEuropeRURussia
192.165.12.17

IPv4 lookup - using source in external_data()

let IP_Data = external_data(network:string,geoname_id:long,continent_code:string,continent_name:string ,country_iso_code:string,country_name:string,is_anonymous_proxy:bool,is_satellite_provider:bool)
    ['https://raw.githubusercontent.com/datasets/geoip2-ipv4/master/data/geoip2-ipv4.csv'];
let IPs = datatable(ip:string)
[
    '2.20.183.12',   // United Kingdom
    '5.8.1.2',       // Russia
    '192.165.12.17', // Sweden
];
IPs
| evaluate ipv4_lookup(IP_Data, ip, network, return_unmatched = true)

Output

ipnetworkgeoname_idcontinent_codecontinent_namecountry_iso_codecountry_nameis_anonymous_proxyis_satellite_provider
2.20.183.122.20.183.0/242635167EUEuropeGBUnited Kingdom00
5.8.1.25.8.0.0/192017370EUEuropeRURussia00
192.165.12.17192.165.8.0/212661886EUEuropeSESweden00

IPv4 lookup - using extra columns for matching

let IP_Data = external_data(network:string,geoname_id:long,continent_code:string,continent_name:string ,country_iso_code:string,country_name:string,is_anonymous_proxy:bool,is_satellite_provider:bool)
    ['https://raw.githubusercontent.com/datasets/geoip2-ipv4/master/data/geoip2-ipv4.csv'];
let IPs = datatable(ip:string, continent_name:string, country_iso_code:string)
[
    '2.20.183.12',   'Europe', 'GB', // United Kingdom
    '5.8.1.2',       'Europe', 'RU', // Russia
    '192.165.12.17', 'Europe', '',   // Sweden is 'SE' - so it won't be matched
];
IPs
| evaluate ipv4_lookup(IP_Data, ip, network, continent_name, country_iso_code)

Output

ipcontinent_namecountry_iso_codenetworkgeoname_idcontinent_codecountry_nameis_anonymous_proxyis_satellite_provider
2.20.183.12EuropeGB2.20.183.0/242635167EUUnited Kingdom00
5.8.1.2EuropeRU5.8.0.0/192017370EURussia00

5 - ipv6_lookup plugin

Learn how to use the ipv6_lookup plugin to look up an IPv6 address in a lookup table.

The ipv6_lookup plugin looks up an IPv6 value in a lookup table and returns rows with matched values. The plugin is invoked with the evaluate operator.

Syntax

T | evaluate ipv6_lookup( LookupTable , SourceIPv6Key , IPv6LookupKey [, return_unmatched ] )

Parameters

NameTypeRequiredDescription
Tstring✔️The tabular input whose column SourceIPv6Key is used for IPv6 matching.
LookupTablestring✔️Table or tabular expression with IPv6 lookup data, whose column LookupKey is used for IPv6 matching. IPv6 values can be masked using IP-prefix notation.
SourceIPv6Keystring✔️The column of T with IPv6 string to be looked up in LookupTable. IPv6 values can be masked using IP-prefix notation.
IPv6LookupKeystring✔️The column of LookupTable with IPv6 string that is matched against each SourceIPv6Key value.
return_unmatchedboolA boolean flag that defines if the result should include all or only matching rows (default: false - only matching rows returned).

Returns

The ipv6_lookup plugin returns a result of join (lookup) based on IPv6 key. The schema of the table is the union of the source table and the lookup table, similar to the result of the lookup operator.

If the return_unmatched argument is set to true, the resulting table includes both matched and unmatched rows (filled with nulls).

If the return_unmatched argument is set to false, or omitted (the default value of false is used), the resulting table has as many records as matching results. This variant of lookup has better performance compared to return_unmatched=true execution.

Examples

IPv6 lookup - matching rows only

// IP lookup table: IP_Data (the data is generated by ChatGPT).
let IP_Data = datatable(network:string, continent_code:string ,continent_name:string, country_iso_code:string, country_name:string)
[
  "2001:0db8:85a3::/48","NA","North America","US","United States",
  "2404:6800:4001::/48","AS","Asia","JP","Japan",
  "2a00:1450:4001::/48","EU","Europe","DE","Germany",
  "2800:3f0:4001::/48","SA","South America","BR","Brazil",
  "2c0f:fb50:4001::/48","AF","Africa","ZA","South Africa",
  "2607:f8b0:4001::/48","NA","North America","CA","Canada",
  "2a02:26f0:4001::/48","EU","Europe","FR","France",
  "2400:cb00:4001::/48","AS","Asia","IN","India",
  "2801:0db8:85a3::/48","SA","South America","AR","Argentina",
  "2a03:2880:4001::/48","EU","Europe","GB","United Kingdom"
];
let IPs = datatable(ip:string)
[
  "2001:0db8:85a3:0000:0000:8a2e:0370:7334", // United States
  "2404:6800:4001:0001:0000:8a2e:0370:7334", // Japan
  "2a02:26f0:4001:0006:0000:8a2e:0370:7334", // France
  "a5e:f127:8a9d:146d:e102:b5d3:c755:abcd",  // N/A
  "a5e:f127:8a9d:146d:e102:b5d3:c755:abce"   // N/A
];
IPs
| evaluate ipv6_lookup(IP_Data, ip, network)

Output

networkcontinent_codecontinent_namecountry_iso_codecountry_nameip
2001:0db8:85a3::/48NANorth AmericaUSUnited States2001:0db8:85a3:0000:0000:8a2e:0370:7334
2404:6800:4001::/48ASAsiaJPJapan2404:6800:4001:0001:0000:8a2e:0370:7334
2a02:26f0:4001::/48EUEuropeFRFrance2a02:26f0:4001:0006:0000:8a2e:0370:7334

IPv6 lookup - return both matching and nonmatching rows

// IP lookup table: IP_Data (the data is generated by ChatGPT).
let IP_Data = datatable(network:string, continent_code:string ,continent_name:string, country_iso_code:string, country_name:string)
[
  "2001:0db8:85a3::/48","NA","North America","US","United States",
  "2404:6800:4001::/48","AS","Asia","JP","Japan",
  "2a00:1450:4001::/48","EU","Europe","DE","Germany",
  "2800:3f0:4001::/48","SA","South America","BR","Brazil",
  "2c0f:fb50:4001::/48","AF","Africa","ZA","South Africa",
  "2607:f8b0:4001::/48","NA","North America","CA","Canada",
  "2a02:26f0:4001::/48","EU","Europe","FR","France",
  "2400:cb00:4001::/48","AS","Asia","IN","India",
  "2801:0db8:85a3::/48","SA","South America","AR","Argentina",
  "2a03:2880:4001::/48","EU","Europe","GB","United Kingdom"
];
let IPs = datatable(ip:string)
[
  "2001:0db8:85a3:0000:0000:8a2e:0370:7334", // United States
  "2404:6800:4001:0001:0000:8a2e:0370:7334", // Japan
  "2a02:26f0:4001:0006:0000:8a2e:0370:7334", // France
  "a5e:f127:8a9d:146d:e102:b5d3:c755:abcd",  // N/A
  "a5e:f127:8a9d:146d:e102:b5d3:c755:abce"   // N/A
];
IPs
| evaluate ipv6_lookup(IP_Data, ip, network, true)

Output

networkcontinent_codecontinent_namecountry_iso_codecountry_nameip
2001:0db8:85a3::/48NANorth AmericaUSUnited States2001:0db8:85a3:0000:0000:8a2e:0370:7334
2404:6800:4001::/48ASAsiaJPJapan2404:6800:4001:0001:0000:8a2e:0370:7334
2a02:26f0:4001::/48EUEuropeFRFrance2a02:26f0:4001:0006:0000:8a2e:0370:7334
a5e:f127:8a9d:146d:e102:b5d3:c755:abcd
a5e:f127:8a9d:146d:e102:b5d3:c755:abce

6 - preview plugin

Learn how to use the preview plugin to return two tables, one with the specified number of rows, and the other with the total number of records.

Returns a table with up to the specified number of rows from the input record set, and the total number of records in the input record set.

Syntax

T | evaluate preview(NumberOfRows)

Parameters

NameTypeRequiredDescription
Tstring✔️The table to preview.
NumberOfRowsint✔️The number of rows to preview from the table.

Returns

The preview plugin returns two result tables:

  • A table with up to the specified number of rows. For example, the sample query above is equivalent to running T | take 50.
  • A table with a single row/column, holding the number of records in the input record set. For example, the sample query above is equivalent to running T | count.

Example

StormEvents | evaluate preview(5)

Table1

The following output table only includes the first 6 columns. To see the full result, run the query.

|StartTime|EndTime|EpisodeId|EventId|State|EventType|…| |–|–|–| |2007-12-30T16:00:00Z|2007-12-30T16:05:00Z|11749|64588|GEORGIA| Thunderstorm Wind|…| |2007-12-20T07:50:00Z|2007-12-20T07:53:00Z|12554|68796|MISSISSIPPI| Thunderstorm Wind|…| |2007-09-29T08:11:00Z|2007-09-29T08:11:00Z|11091|61032|ATLANTIC SOUTH| Waterspout|…| |2007-09-20T21:57:00Z|2007-09-20T22:05:00Z|11078|60913|FLORIDA| Tornado|…| |2007-09-18T20:00:00Z|2007-09-19T18:00:00Z|11074|60904|FLORIDA| Heavy Rain|…|

Table2

Count
59066

7 - schema_merge plugin

Learn how to use the schema_merge plugin to merge tabular schema definitions into a unified schema.

Merges tabular schema definitions into a unified schema.

Schema definitions are expected to be in the format produced by the getschema operator.

The schema merge operation joins columns in input schemas and tries to reduce data types to common ones. If data types can’t be reduced, an error is displayed on the problematic column.

The plugin is invoked with the evaluate operator.

Syntax

T | evaluate schema_merge(PreserveOrder)

Parameters

NameTypeRequiredDescription
PreserveOrderboolWhen set to true, directs the plugin to validate the column order as defined by the first tabular schema that is kept. If the same column is in several schemas, the column ordinal must be like the column ordinal of the first schema that it appeared in. Default value is true.

Returns

The schema_merge plugin returns output similar to what getschema operator returns.

Examples

Merge with a schema that has a new column appended.

let schema1 = datatable(Uri:string, HttpStatus:int)[] | getschema;
let schema2 = datatable(Uri:string, HttpStatus:int, Referrer:string)[] | getschema;
union schema1, schema2 | evaluate schema_merge()

Output

ColumnNameColumnOrdinalDataTypeColumnType
Uri0System.Stringstring
HttpStatus1System.Int32int
Referrer2System.Stringstring

Merge with a schema that has different column ordering (HttpStatus ordinal changes from 1 to 2 in the new variant).

let schema1 = datatable(Uri:string, HttpStatus:int)[] | getschema;
let schema2 = datatable(Uri:string, Referrer:string, HttpStatus:int)[] | getschema;
union schema1, schema2 | evaluate schema_merge()

Output

ColumnNameColumnOrdinalDataTypeColumnType
Uri0System.Stringstring
Referrer1System.Stringstring
HttpStatus-1ERROR(unknown CSL type:ERROR(columns are out of order))ERROR(columns are out of order)

Merge with a schema that has different column ordering, but with PreserveOrder set to false.

let schema1 = datatable(Uri:string, HttpStatus:int)[] | getschema;
let schema2 = datatable(Uri:string, Referrer:string, HttpStatus:int)[] | getschema;
union schema1, schema2 | evaluate schema_merge(PreserveOrder = false)

Output

ColumnNameColumnOrdinalDataTypeColumnType
Uri0System.Stringstring
Referrer1System.Stringstring
HttpStatus2System.Int32int