Restrict statement

Learn how to use the restrict statement to limit tabular views that are visible to subsequent query statements.

The restrict statement limits the set of table/view entities which are visible to query statements that follow it. For example, in a database that includes two tables (A, B), the application can prevent the rest of the query from accessing B and only “see” a limited form of table A by using a view.

The restrict statement’s main scenario is for middle-tier applications that accept queries from users and want to apply a row-level security mechanism over those queries. The middle-tier application can prefix the user’s query with a logical model, a set of let statements to define views that restrict the user’s access to data, for example ( T | where UserId == "..."). As the last statement being added, it restricts the user’s access to the logical model only.

Syntax

restrict access to (EntitySpecifiers)

Parameters

NameTypeRequiredDescription
EntitySpecifiersstring✔️One or more comma-separated entity specifiers. The possible values are:
- An identifier defined by a let statement as a tabular view
- A table or function reference, similar to one used by a union statement
- A pattern defined by a pattern declaration

Examples

The examples in this section show how to use the syntax to help you get started.

Let statement

The example uses a let statement appearing before restrict statement.

// Limit access to 'Test' let statement only
let Test = () { print x=1 };
restrict access to (Test);

Tables or functions

The example uses references to tables or functions that are defined in the database metadata.

// Assuming the database that the query uses has table Table1 and Func1 defined in the metadata, 
// and other database 'DB2' has Table2 defined in the metadata

restrict access to (database().Table1, database().Func1, database('DB2').Table2);

Patterns

The example uses wildcard patterns that can match multiples of let statements or tables/functions.

let Test1 = () { print x=1 };
let Test2 = () { print y=1 };
restrict access to (*);
// Now access is restricted to Test1, Test2 and no tables/functions are accessible.

// Assuming the database that the query uses has table Table1 and Func1 defined in the metadata.
// Assuming that database 'DB2' has table Table2 and Func2 defined in the metadata
restrict access to (database().*);
// Now access is restricted to all tables/functions of the current database ('DB2' is not accessible).

// Assuming the database that the query uses has table Table1 and Func1 defined in the metadata.
// Assuming that database 'DB2' has table Table2 and Func2 defined in the metadata
restrict access to (database('DB2').*);
// Now access is restricted to all tables/functions of the database 'DB2'

Prevent user from querying other user data

The example shows how a middle-tier application can prepend a user’s query with a logical model that prevents the user from querying any other user’s data.

// Assume the database has a single table, UserData,
// with a column called UserID and other columns that hold
// per-user private information.
//
// The middle-tier application generates the following statements.
// Note that "username@domain.com" is something the middle-tier application
// derives per-user as it authenticates the user.
let RestrictedData = view () { Data | where UserID == "username@domain.com" };
restrict access to (RestrictedData);
// The rest of the query is something that the user types.
// This part can only reference RestrictedData; attempting to reference Data
// will fail.
RestrictedData | summarize MonthlySalary=sum(Salary) by Year, Month
// Restricting access to Table1 in the current database (database() called without parameters)
restrict access to (database().Table1);
Table1 | count

// Restricting access to Table1 in the current database and Table2 in database 'DB2'
restrict access to (database().Table1, database('DB2').Table2);
union 
    (Table1),
    (database('DB2').Table2))
| count

// Restricting access to Test statement only
let Test = () { range x from 1 to 10 step 1 };
restrict access to (Test);
Test
 
// Assume that there is a table called Table1, Table2 in the database
let View1 = view () { Table1 | project Column1 };
let View2 = view () { Table2 | project Column1, Column2 };
restrict access to (View1, View2);
 
// When those statements appear before the command - the next works
let View1 = view () { Table1 | project Column1 };
let View2 = view () { Table2 | project Column1, Column2 };
restrict access to (View1, View2);
View1 |  count
 
// When those statements appear before the command - the next access is not allowed
let View1 = view () { Table1 | project Column1 };
let View2 = view () { Table2 | project Column1, Column2 };
restrict access to (View1, View2);
Table1 |  count