innerunique join

Learn how to use the innerunique join flavor to merge the rows of two tables.

The innerunique join flavor removes duplicate keys from the left side. This behavior ensures that the output contains a row for every combination of unique left and right keys.

By default, the innerunique join flavor is used if the kind parameter isn’t specified. This default implementation is useful in log/trace analysis scenarios, where you aim to correlate two events based on a shared correlation ID. It allows you to retrieve all instances of the phenomenon while disregarding duplicate trace records that contribute to the correlation.

Diagram that shows how the join works.

Syntax

LeftTable | join kind=innerunique [ Hints ] RightTable on Conditions

Returns

Schema: All columns from both tables, including the matching keys.
Rows: All deduplicated rows from the left table that match rows from the right table.

Examples

Review the examples and run them in your Data Explorer query page.

Use the default innerunique join

The example query combines rows from tables X and Y where the keys match, showing only the rows that exist in both tables

let X = datatable(Key:string, Value1:long)
[
    'a',1,
    'b',2,
    'b',3,
    'c',4
];
let Y = datatable(Key:string, Value2:long)
[
    'b',10,
    'c',20,
    'c',30,
    'd',40
];
X | join Y on Key

Output

KeyValue1Key1Value2
b2b10
c4c20
c4c30

The query executed the default join, which is an inner join after deduplicating the left side based on the join key. The deduplication keeps only the first record. The resulting left side of the join after deduplication is:

KeyValue1
a1
b2
c4

Two possible outputs from innerunique join

let t1 = datatable(key: long, value: string)  
    [
    1, "val1.1",  
    1, "val1.2"  
];
let t2 = datatable(key: long, value: string)  
    [  
    1, "val1.3",
    1, "val1.4"  
];
t1
| join kind = innerunique
    t2
    on key

Output

keyvaluekey1value1
1val1.11val1.3
1val1.11val1.4
let t1 = datatable(key: long, value: string)  
    [
    1, "val1.1",  
    1, "val1.2"  
];
let t2 = datatable(key: long, value: string)  
    [  
    1, "val1.3", 
    1, "val1.4"  
];
t1
| join kind = innerunique
    t2
    on key

Output

keyvaluekey1value1
1val1.21val1.3
1val1.21val1.4
  • Kusto is optimized to push filters that come after the join, towards the appropriate join side, left or right, when possible.
  • Sometimes, the flavor used is innerunique and the filter is propagated to the left side of the join. The flavor is automatically propagated and the keys that apply to that filter appear in the output.
  • Use the previous example and add a filter where value == "val1.2" . It gives the second result and will never give the first result for the datasets:
let t1 = datatable(key: long, value: string)  
    [
    1, "val1.1",  
    1, "val1.2"  
];
let t2 = datatable(key: long, value: string)  
    [  
    1, "val1.3", 
    1, "val1.4"  
];
t1
| join kind = innerunique
    t2
    on key
| where value == "val1.2"

Output

keyvaluekey1value1
1val1.21val1.3
1val1.21val1.4

Get extended sign-in activities

Get extended activities from a login that some entries mark as the start and end of an activity.

let Events = MyLogTable | where type=="Event" ;
Events
| where Name == "Start"
| project Name, City, ActivityId, StartTime=timestamp
| join (Events
    | where Name == "Stop"
        | project StopTime=timestamp, ActivityId)
    on ActivityId
| project City, ActivityId, StartTime, StopTime, Duration = StopTime - StartTime
let Events = MyLogTable | where type=="Event" ;
Events
| where Name == "Start"
| project Name, City, ActivityIdLeft = ActivityId, StartTime=timestamp
| join (Events
        | where Name == "Stop"
        | project StopTime=timestamp, ActivityIdRight = ActivityId)
    on $left.ActivityIdLeft == $right.ActivityIdRight
| project City, ActivityId, StartTime, StopTime, Duration = StopTime - StartTime